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Abstract We study on-line decision problems where the set of actibat dre available
to the decision algorithm varies over time. With a few notaékceptions, such problems
remained largely unaddressed in the literature, despiie éipplicability to a large number
of practical problems. Departing from previous work on ti8¢eeping Experts” problem,
we compare algorithms against the payoff obtained bp##t orderingf the actions, which
is a natural benchmark for this type of problem. We study kbéhfull-information (best
expert) and partial-information (multi-armed bandit)tsgfs and consider both stochastic
and adversarial rewards models. For all settings we giveritigns achieving (almost)
information-theoretically optimal regret bounds (up to @nstant or a sub-logarithmic
factor) with respect to the best-ordering benchmark.

Keywords Online algorithms Computational learning theoryRegret

1 Introduction

In on-line decision problems, or sequential predictiorbfgms, an algorithm must choose,
in each of theT consecutive rounds, one of timepossible actions. In each round, each
action receives a real valued positive payoff{@l], initially unknown to the algorithm.
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At the end of each round the algorithm receives some infaomatbout the payoffs of the
actions in that round. The goal of the algorithm is to maxartize total payoff, i.e. the sum
of the payoffs of the chosen actions in each round. The stdrm&line decision settings
are thebest expersetting (or the full-information setting) in which, at thedeof the round,
the payoffs ofall n strategies are revealed to the algorithm, andrthati-armed bandit
setting (or the partial-information setting) in which orihe payoff of the chosen strategy
is revealed. Customarily, in the best expert setting thetesgies are calledxpertsand in
the multi-armed bandit setting the strategies are cdlettitsor arms We useactionsto
generically refer to both types of strategies, when we daoefetr particularly to either.

In the prior-free setting (as is the case in this paper), #rfopmance of the algorithm is
typically measured in terms oégret (See (Gittins, 1979), (Gittins & Jones, 1979) for max-
imization of expected reward in the Bayesian setting.) Huget is the difference between
the expected payoff of the algorithm and the payoff of a @ried strategy for selecting
actions. The usual single fixed strategy to compare againbeione which always selects
the expert or bandit that has the highest total payoff ovemthounds in hindsight.

The usual assumption in online learning problems is thedalbns are available at all
times. In many applications, however, this assumption igppropriate. In network routing
problems, for example, some of the routes are unavailalsiena¢ point in time due to router
or link crashes. Or, in electronic commerce problems, itarasout of stock, sellers are not
available (due to maintenance or simply going out of busipesnd buyers do not buy all
the time. Even in the setting that gave multi-armed bandiblgms their name, a gambler
playing slot machines, some of the slot machines might baped by other players at any
given time.

In this paper we relax the assumption that all actions aritedba at all times, and allow
the set of available actions to vary in an adversarial wapnfome round to the next, a model
known as “predictors that specialize” or “sleeping exgdrgrior work. The first founda-
tional question that needs to be addressed is how to definet egen the set of available
actions may vary over time. Defining regret with respect ® ltlst action in hindsight is
no longer appropriate since that action might sometimesna@ailable. A useful thought
experiment for guiding our intuition is the following: if el action had a fixed payoff distri-
bution that waknownto the decision-maker, what would be the best way to choosasgm
the available actions? The answer is obvious: one shouler @itl of the actions accord-
ing to their expected payoff, then choose among the availatlions by selecting the one
which ranks highest in this ordering. Guided by the outcofrthie thought experiment, we
define our base to be the best ordering of actions in hind¢sglet Section 1.1 for a formal
definition) and contend that this is a natural and intuitiaywo define regret in our setting.
This contention is also supported by the informal obseovettiat order-based decision rules
seem to resemble the way people make choices in situatidghsawiarying set of actions,
e.g. choosing which brand of beer to buy at a store.

We prove lower and upper bounds on the regret with respedtetdést ordering for
both the best expert setting and the multi-armed bandiingettVe first explore the case
of a stochastic adversary, where the payoffs received bgracat each time step are in-
dependent samples from an unknown but fixed distribuRgn supported or0, 1] with
meany;. (Note that in this paper, the choice of which actions ardlae to be picked
in each round is always adversarial. In other words, thermisglistributional assumption
on the subset of available actions.) Assuming tlmat- > > --- > U, (and the algorithm,
of course, does not know the identities of these actions) wegvghat the regret of any

learning algorithm will necessarily be at Ieeﬁt(z{‘;ll m im) in the best expert setting,
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andQ (Iog(T) z{‘;ll Mftm) in the multi-armed bandit setting if the game is playedTor

rounds (forT sufficiently largé). We also present efficient learning algorithms for both set
tings. For the multi-armed bandit setting, our algorithadled AUER, is an adaptation of the
UCBL1 algorithm in Auer et al. (2002a), which comes within a consfactor of the lower
bound mentioned above. For the expert setting, a very sialgteithm, called “follow-the-
awake-leader”, which is a variant of “follow-the-leadeFignnan, 1957; Kalai & Vempala,
2005), comes within a constant factor of the lower bound ab@vhile our algorithms are
adaptations of existing techniques, the proofs of the uppdiower bounds hinge on some
technical innovations.

For the lower bound in stochastic multi-armed bandit sgttive must modify the classic
asymptotic lower bound proof of Lai and Robbins (Lai & Rol#hitt985) to obtain a bound
which holds at all sufficiently large finite times. For thedtastic best expert setting, we
adapt standard KL-divergence arguments to prove a premiger bound that also holds for
sufficiently large finite times. Our lower bounds in Lemma & daremma 14 don't refer
to the “sleeping” version of the problem, and concern thegital best-expert setting and
multi-armed bandit setting (all actions available), whidight be of interest outside the
context of this paper.

To prove that our lower and upper bounds are within a condeantor of each other
we use a novel lemma (Lemma 4) that allows us to relate a ragper bound arising from
application ofuCBL1 to a sum of lower bounds for two-armed bandit problems (amdlasily
in the best expert setting).

Next we explore the fully adversarial case where we make soragtions on how the
payoffs for each action are generated (in particular, treeydcdepend on the time horizon
T). This model has been extensively studied in both the bgmresetting and the multi-
armed bandit setting (see (Littlestone & Warmuth, 1994yget al., 2002b) and references
therein). For the variant in which only a subset of the actiare available at any given time,
we show that the regret of any learning algorithm must bea#t@ (/T nlog(n)) for the
best expert setting ard (\/W) for the multi-armed bandit setting. We also present simple
variants of algorithms in (Littlestone & Warmuth, 1994) af#&ler et al., 2002b) whose
regret is within a constant factor of the lower bound for tlestbexpert setting, and within
0(+/log(n)) of the lower bound for the multi-armed bandit setting.

The fully adversarial case, however, proves to be hardéernaither algorithm is com-
putationally efficient. To appreciate the hardness of thg &dversarial case, we prove that,
unless RP= NP, any low regret algorithm that learns internally a camsisordering over
experts can not be computationally efficient. Note that dues not mean that there can
be no computationally efficient, low regret algorithms foe fully adversarial case. There
might exist learning algorithms that are able to achieveregret without actually learning
a consistent ordering over experts. Finding such algosthhthey do indeed exist, remains
an open problem.

1.1 Terminology and Conventions

We assume that there is a fixed pool of actidiis2, ...n}, with nknown. We will sometimes
refer to an action bexpertin the best expert setting and laym or bandit in the multi-

1 Asis the convention in the literature, the problem instanc®t allowed to depend ohin the stochastic
setting. In other words, first the distributioRg-) are chosen, and then we look at regret bounds as a function
of T.



armed bandit setting. At each time step {1,2,...,T}, an adversary chooses a sub&et
{1,2,...,n} of the actions to be available. The algorithm can only ch@seng available
actions, and only available actions receive rewards. Thane received by an available
actioni at timet is r(t) € [0, 1].

We will consider two models for assigning rewards to actiastochastic model and an
adversarial model. (In contrast, the choice of the set okaveaperts is always adversarial.)
In the stochastic model the reward for armt timet, ri(t), is drawn independently from a
fixed unknown distributio® (-) with bounded support and megn In the adversarial model
we make no stochastic assumptions on how the rewards agneddb actions. Instead, we
assume that the rewards are selected by an adaptive agvdisaradversary is potentially
but not necessarily randomized.

Let o be an ordering (permutation) of timeactions, andA a subset of the actions. We
denote byo(A) the action inA that is highest ranked ior. A g-policy corresponding to
the orderingo is the policy that selects, at each time stethe actiono(A;) (i.e. available
action that is highest ranked lgyj). The reward of a policy is the reward obtained by the
selected action at each time step:

T

ro(1:T)= Z\ra(m(t) @
=

Letrmax(1:T) =maxsrg(1:T) (maxs E[rg(1: T)] in the stochastic rewards model)
be the reward obtained by the bespolicy (ordering), which is also called the benchmark.
Note that in the stochastic reward model, the expectatitaken before taking the maximum
over all orderings, which corresponds to the “maximum etg@creward, as opposed to the
“expected maximum” reward in the adversarial setting (@dse done in the literature). We
define the regret of an algorithm with respect to the loepblicy as the expected difference
between the reward obtained by the bespolicy and the total reward of the algorithm’s
chosen actiong(1),x(2), ..., x(t):

regref(1:T)=E

T
max(1:T) tzirx<t)(t):| ) (2)

where the expectation is taken over the algorithm’s randboices and the randomness
used in the reward assignment.

1.2 Related Work

Sequential prediction problem&he best-expert and multi-armed bandit problems corre-
spond to special cases of our model in which every actionnays available. These prob-
lems have been widely studied, and we draw on this literatudesign algorithms and prove
lower bounds for the generalizations considered here. Tieraarial expert paradigm was
introduced by Littlestone and Warmuth (1994), and Vovk (9€esa-Bianchi et al. (1997)
further developed this paradigm in work which gave optiregiret bounds of/T (Inn) and
Vovk (1998) characterized the achievable regret boundsese settings.

The multi-armed bandit model was introduced by Robbins 2)9Bai and Robbins
(1985) gave asymptotically optimal strategies for the Iséstic version of bandit problem,
where rewards for each arm are drawn from a fixed distributiaach time step.

Auer et al. (2002a) introduced the algoritin@B1 and showed that the optimal regret

bounds of(logT - z{‘;ll Hi*:ILJHl) can be achieved uniformly over time for the stochastic




bandit problem (the arms are arranged such that p, > --- > up). For the adversarial
version of the multi-armed bandit problem, Auer et al. (28)d2roposed the algorithiixp3
which achieves the regret bound of(,/Tnlogn), leaving a,/logn factor gap from the
lower bound of2 (v/nT). Recently, Audibert and Bubeck (2009) proposed(a/T n) regret
algorithm for the adversarial multi-armed bandit probldiesing the sub-logarithmic gap.
It is worth noting that the lower bound holds even for an dbli¢ adversary, one which
chooses a sequence of payoff functions independently algmeithm’s choices.

Prediction with sleeping expertdzreund et al. (1997) and Blum and Mansour (2005) have
analysed the sleeping experts problem in a different framnefvom the one we adopt here.
In the model of Freund et al., as in our model, a set of awakeréx|is specified in each
time period. The goal of the algorithm is to choose one exipegtich time period so as to
minimize regret against the best “mixture” of experts (Wwhionstitutes their benchmark).
A mixture u is a probability distributior(ug, uy, ..., un) overn experts which in time period

t selects an expert according to the restriction ¢ the set of awake experts.

In contrast, our work uses a different evaluation criterieamely the best ordering of
experts. In the special case when all experts are alwayseawakh evaluation criteria pick
the best expert. Our “best ordering” criterion can be regduas a degenerate case (limiting
case) of the “best mixture” criterion of Freund et al. asdats. For the ordering, we assign
probabilities%(l,s,sz, ...,&"1) to the sequence of experts(1),0(2),...,0(n)) where
Z= 11%5: is the normalization factor angd> 0 is an arbitrarily small positive constant. The
only problem is that the bounds obtained from (Freund efLl8B7) in this degenerate case
are very weak. Ag — 0, their bound reduces to comparing the algorithm’s peréroe to
the orderingo’s performance only for time periods when expe(t) is awake, and ignoring
the time periods wherr(1) is not awake. Therefore, a natural reduction of our problem t
the problem considered by Freund et al. defeats the purdageing equal importance to
all time periods.

Blum and Mansour (2005) consider a generalization of thepéig expert problem,
where one has a set tifne selection functionand the algorithm aims to have low regret
with respect to every expert, according to every time siledunction. It is possible to
solve our regret-minimization problem (with respect to liest ordering of experts) by re-
ducing to the regret-minimization problem solved by Blurd &fensour, but this leads to an
algorithm which is neither computationally efficient nofdrmation-theoretically optimal.
We now sketch the details of this reduction. One can definena selection function for
each (ordering, expert) paio, i), according tdgi(t) =1if i < jforall j € A (thatis,o
chooses in time periodt if l5(t) = 1). The regret can now be bounded, using Blum and
Mansour’s analysis, as

o (v/Tlog(n-ni-n)+log(n!-n%) ) = & (v/TrPlogn+n*logn) .

This algorithm takes exponential time (due to the expoaémiumber of time selection
functions) and gives a regret bound of /T ¢logn) against the best ordering, a bound
which we improve in Section 3 using a different algorithm e¥halso takes exponential time
but is information-theoretically optimal. (Of course, Bland Mansour were designing their
algorithm for a different objective, not trying to get longret with respect to best ordering.
Our improved bound for regret with respect to the best ondedioes not imply an improved
bound for experts learning with time selection functions.)



A recent paper by Langford and Zhang (2007) presents anithigocalled theEpoch-
Greedy algorithmfor bandit problems with side information. This is a genieetlon of
the multi-armed bandit problem in which the algorithm is gligdd with a piece ofside
informationin each time period before deciding which action to play.eBia hypothesis
classs7 of functions mapping side information to actions, the Ep@ekedy algorithm
achieves low regret against a sequence of actions gendmatapplying a single function
h € s to map the side information in every time period to an act{@e functionh is
chosen so that the resulting sequence has the largest lpasgdd payoff.) The stochastic
case of our problem is reducible to theirs, by treating theoSavailable actions4;, as a
piece of side information and considering the hypothesisi#’ consisting of functions
hg, for each total orderingr of the set of actions, such thag(A) selects the element of
A which appears first in the orderir@. The regret bound in (Langford & Zhang, 2007) is
expressed implicitly in terms of the expected regret of apidoal reward maximization
estimator, which makes it difficult to compare this boundwatirs. Instead of pursuing this
reduction from our problem to the contextual bandit probierfLangford & Zhang, 2007),
we propose a very simple bandit algorithm for the stochasiting with an explicit regret
bound that is provably information-theoretically optimal

2 Stochastic Model of Rewards

We first explore the stochastic rewards model, where thertefeaactioni at each time step
is drawn independently from a fixed unknown distributi®f) with meany;. For simplicity
of presentation, throughout this section we assumeithaty, > - - - > Uy That s, the lower
numbered actions are better than the higher numbered aclietd); j = 1 — pj forall i < j
be the increase in the expected reward of exipaver expertj.

We present optimal (up to a constant factor) algorithms @th the best expert and the
multi-armed bandit setting. Both algorithms are naturéesions of algorithms for the all-
awake problem to the sleeping-experts problem. The amsabfgine algorithms, however,
is not a straightforward extension of the analysis for thewakke problem and new proof
techniques are required.

2.1 Best Expert Setting

In this section we study the best expert setting with stagheswvards. We provide an algo-
rithm and prove matching (up to a constant factor) infororatheoretic lower bounds on
the regret of any algorithm.

2.1.1 Upper Bound (AlgorithnETAL)

To get an upper bound on regret we adapt the “follow the I¢adgorithm (Hannan, 1957;
Kalai & Vempala, 2005) to the sleeping experts setting: @he@me step the algorithm
chooses the awake expert that has the highest average ,papeffe the average is taken
over the time steps when the expert was awake. If an expestakeafor the first time, then
the algorithm chooses it. (If there is more than one suchréxen the algorithm chooses
one of them arbitrarily.) The pseudocode for the algoritlsnshown in Algorithm 1. The
algorithm is called-ollow The AwakeL eader ETAL for short).

The performance guarantee of the algorithiAL is presented in the following theorem.



1 Initialize z = 0 andn; = 0 for alli € [n].
2 fort=1to T do

if 3j € Acs.t. np =0then
Play experi(t) = j

Play experi(t) = arg maxea, (%)
end
Observe payoffi(t) for all i € A
9 z —z+ri(t) foralli e A
10 n «—nj+1forallie A
11 end

Algorithm 1: Follow-the-awake-leaderFTAL) algorithm for the sleeping experts
problem with a stochastic adversary.

3
4
5 else
6
7
8

Theorem 1 LetAjj 1 >0fori=1,2,...,n— 1 ThenFTAL algorithm has a regret of at
most

n-1 32

i; Dij1’

with respect to the best ordering.

Note that we are only considering problem instances in wtiiffarent arms have different
average payoffs. Also note that As 1 gets close to 0, the regret bound become vacuous.
A general result will be proved in Theorem 6 which will takeeaf both these restrictions,
and the above theorem follows as a corollary to Theorem 6 tiynge = 0.

The above theorem follows immediately from the followingrpd lemmas. The second
of these lemmas will also be used in Section 2.2.

Lemma 2 LetAjj 1 >0fori=1,2,...,n—1 Then theFTAL algorithm has a regret of at
most

n j—-1 )
— (A1 +4j-1j)
JZZ i; A3
with respect to the best ordering.

Proof Letn;; be the number of times expeéithas been awake until timelLet i ; be expert
i's average payoff until timé. The Azuma-Hoeffding Inequality (Azuma, 1967; Hoeffding,
1963) says that

n]ZtAizj A2
- e it
Plnjtfljr > NjeMj+njedij/2 <e Nt =e ,
and
_ Al 42niy
Plnicfis <nigth —nigdij/2)<e Mt =e 8

Let us say that the TAL algorithm suffers aii, j)-anomaly of type &t timet if x, = j and
i — Mj > 4i;/2; note that the definition does not require expdd be awake at timé.
Definei; to be the optimal expert at tinte(lowest indexed expert if). Let us say that



FTAL suffers an(i, j)-anomaly of type 2t timet if if =i andy; — fliy > A; j/2; note again
that the definition does not require expgtd be awake at time Note that wherr TAL picks
a strategy = j # i =i, it suffers an(i, j)-anomaly of type 1 or 2, or possibly both. We

wiII denote the event of af, j)- anomaly of type 1 (resp. type 2) at tihéy gl(JD (t) (resp.
( )), and we will usel\/l,(J , resp. MI 7, to denote the total number @f, j)-anomalies of

types 1 and 2, respectively. We can bound the expected v&Mé}Bby

1) — A
EM7T< S e 8 1{jeA} ®3)
t=
© Aizjn
<Se e (4)
2
1 8
L

where line (4) is justified by observing that distinct nomzearms in (3) have distinct values
of nj ;. The expectation oIf/I<]) is also bounded by /&2 ", via an analogous argument.

Recall thatA; denotes the set of awake experts at time € A; denotes the algorithm’s
choice at time, andr;(t) denotes the payoff of experat timet (which is distributed ac-
cording toR (-)). Recall thai; € A is the optimal expert at time(i.e., the lowest-numbered
element ofA;). We are now ready to bound the regret of E¥AL algorithm. A very crucial
observation that we make next is that when &fris the optimal arm in round and arm
X # if is picked by the algorithm, one of the following two eventsarinave happened: ei-
ther the observed reward of aifnis muchsmallerthan its actual meap;;, or the observed
reward of armx; is muchlarger than its actual meapy,. The first one corresponds to an
(i, x)-anomaly of type 2, and the second one corresponds g aq)-anomaly of type 1.
We split the regret according to this classification, andigbeiach term in turn.

E{i(rﬁ(ﬂ—%(t))}ZE&AM 211{ SAORY Iﬁzi((t)}Aig,x(}
t= p
<E{le{ 500} B Zl{gfﬂt(t)}m?,x‘} 5)
t=

With the convention that; j = 0 for j <i, the first term in (5) can be bounded as follows.

PREOTN

T n
=E Z 221{5;511) (t)}Ai“} (Since the evenf;tilj?( ) occurs only
[t=1]= for j =x.)

+E

~E ilil{ 450 }zA..H} (6)
[T n j-1

<E ZZ; { }A||+1:| (Sincel{gifj?(t)}Sl{giﬁ(t)}for
i=If i <i .




[T n-1
=E Zi 1{@@&) (t) } Ai_ﬂ} (Since evento@&) (t) occurs only for
[t=1i= i=ig.)
[T n-1 X 1
—E 1{£21 A1 @)
& i; { 1% ( )}j:|21 =1

<E 21 % &P} a0 Fori<ii<iz
[=E=FE--ER J 1{5;?121)(t)}21{é‘;f122)(t)}.)

n-1 n T @
<213 3 4y i{afo)
SRS = |
n— n 2
= Z AifllE[Mu]
i=1j=1+1
8
< _ZAjfl]
1§i<1§nAi,i

Adding the two bounds gives the statement of the lemma.

Before presenting the next lemma that will finish the prooTb&orem 1, let us make
the following definition which will be useful in the proof.

Definition 3 For an expertj andy > 0, letiy(j) be the minimum numbered expert |
such that; j is no more thary. That is

iy(J) :==argmin{i :i < j, A <y}

For an expert, andy > 0, let jy(i) be the maximum numbered expgrt i such that); j is
no more thary. That is

jy(i):=argmaxj:j>i4; <y}
Now we are ready to present our next lemma.

Lemma4 LetAjj 1 >0fori=1,2,...,n—1. Then

n n-1
A P01 <2 ;A;}L ; and AP0 1) < 2_2 Aty
= =

1<i<)<n 1<i<]<n
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Note that this lemma is very important from a technical paihtiew in the proof of the
regret bound foF TAL, but does not have a direct bearing on the intuitive undedstg of
the algorithm.

Note that Lemma 4 combined with Lemma 2 finishes the proof @ofém 1. Instead of
proving the lemma above, we will prove a slight general@afthat will be useful in taking
care of “small4; j1's”), and the lemma above will follow as a special case byipgtt = 0.

Let us first motivate the generalization. The left hand sifi¢he first inequality in
Lemma 4 can also be written {sigiqgmu>0AijjzAi,,i+1, since the conditiom; ; > 0 is
vacuous (we are assuming in the statement of the lemmathat 0 fori < j). Instead of
putting an upper bound Oﬂlgi<j§n:Ai.j>0Ai_’7jzAi_’i+l, we will relax the conditiont; j > 0
to 4 j > £ for somee > 0 and prove an upper bound tmgiqgnﬂi_j>8Ai_szAi,i+1. Let us
present the general case.

Lemmab5 For € >0,

n
A1 <2 > max{e, &,(j)-1i(y} * and
1<i<j<mA j>¢ j=jo(1)+1
) jo(m-1 1
A Aj1j <2 21 max{e, Ajqi).jo(i)+1}
i=

I<i<j<ni4 jse

Recall from Definition 3 that if\; ; > O fori < j, thenjo(i) =i for all i andig(j) = j for
all j, and the above lemma reduces to Lemma 4 by takieg). The more complex bound,
in terms of4; () _1o(j) @ndAjy iy, jo(i)+1, Will be needed later in the paper when proving the
more general Theorem 6 that allows #yrj = 0.

Proof It suffices to prove the first of the two inequalities statedhi@ lemma; the second
follows from the first by replacing eaqly with 1— 1, which has the effect of replacing ;
With Ani1-jny1i-

For afixedi € [n], we write§ j.j-i a ;¢ Aisz as follows.

n
m; »>€Aisz: J;1{j >4 >s}Aij12 (8)
SR =

00

(R
:/oo HJ rE<Ai < Xfl/z})dx (4ij > € impliesj >i.)
x=0 ’ )
0
=2 / [{i:e<aij<y}|y3dy (Changing the variable of
e integrationx /2 = y.)
:2/),:0|{j:£<Ai=i§y}}y’3dy. (9)

Now we can write the following chain of inequalities. (Naobat the best (highest payoff)
expert is indexed as 1, and lowest payoff is inderdd

n—1 )
Zl > A A
i=1je{i+1i+2,...,n}.4 j>¢
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n-1
=Y A1 ; A7 (10)
i; jii>id > Y

n-1 o
= Z'ZlAi,iJrl (/y:OHj re<h< y}}y*dy) (From (9).)

/ y
y70

00 n j*l
=2 y?3 (; ZlAi=i+ll{s <4< y}> dy (Changing the order of summation.)
y=0 ==

ZZi/f y3<
_222/_ (ZA. |+11{E<A| i <y}) dy (Fory< g,theintegrandisO.)

_2;/_y
—2;y_y3 i) — Hig ) S

Now, we need a little care in manipulating this expressioet Ls consider two cases:

(i) Hig(j) = Hig(j)» Which means that there is no arm with meaiyin, p; + €], and (ii)llig(,-) >

Hio(j)» Which means that there is some arm with mearfin uj + €]. In the first case,

Hiy(j) — Hic(j) is zero whenevey < 4jyj)_1y(j), SO the lower limit of the integration can

be changed ta&; (j)—1i0(j)- IN the second case, no special care needs to be taken. Note
that in both casegy; (j) — Hi.(j) < Y. Also note that forj such thatu; = ps, the difference

Hiy(j) — Hig(j) 1S always zero (both terms being equalitg So, we can change the lower
limit of the outer sum to start fronjp(1) + 1 (the first arm which has mean lower than the
mean of the first arm).)

o0 n-1
= 2/ y 3 <21Ai‘i+1- Hire<aij<y} }) dy (Changing the order of integration
y=0 =

nzllAml z 1{e< 4 < y}) dy (Expandlng\{ Hinto sum
i= j=1+1 f1{-}.)

-1
ZlAi"”ll {e<4ij<y} |dy (Changing the order of summation
i and integration.)

A. .+1) dy (Use Definition 3.)
J

n
<2 (1{4,0 1ol > g}/
i=lo l)+ =A io(i)—Lig(j)
S 1
=2 Z (1{Ai0 —Lig(j >€}( l,io(j)) Jrl{AiO ~Lio(j <g} )
j=io(1)+1

y~2dy+ 1{ A ) -vig(i) < €} y_gyzdy>

n

-1
=2 5 (max{e,Aj)-1io(j) })
=iam+1

This concludes the proof of the lemma.

Remarks for smally ;1 Note that the upper bound stated in Theorem 1 become vewy larg
whenA; .1 is very small for someé. Indeed, when mean payoffs of all experts are equal,
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A 11 =0 for alli and upper bound becomes trivial, while the algorithm does (wieking
any expert is as good as any other). We suggest a slight natébficof the proof to take
care of such case.

Let € > O be fixed (the original theorem corresponds to the @ase0). Recall the
definition ofig(j) and j¢ (i) from Definition 3. Note that the three conditions: (& i.(j),
(2) j > je(i), and (3)4;,; > € are equivalent. The idea in this new analysis is to “ideftify
experts that have means withénof each other. (We cannot just make equivalence classes
based on this, since the relation of “being withEirof each other” is not an equivalence
relation.)

Lemma 2 can be modified to prove that the regret of the algarithbounded by

8
26T + _Z(Ai,i+l+Ajfl,j)~

1<i<j<n, “i,j
4 j>¢e

This can be seen by rewriting Equation (6) as

Z 221{ <1J) }is(i);ﬂi,wl

and noting that the second term is at most

{Zlgl{ sHm e stil} —¢T,

since only one of the events t) (corresponding tg = x) can occur for each Equa-
t|on (7) can be similarly mod|f|ed by splitting the summatipp=i+1...% to j =i+
~e(andj = je(i) +1...%.

To upper bound the regret by the sum of inverse4i@f1, we can use Lemma 5. With
these modifications to the proof, we have established thewfivig variant of Theorem 1.
Note that the result of Theorem 1 can be seen to be a spece@abtése theorem below by
settinge = 0.

+E

=E

Theorem 6 For everye > 0, theFTAL algorithm has a regret of at most

n 16 o1 16

2eT + + .
j:j(%mmax{fﬂio(j)—l,iom} i; max{e, Ajy (i) jo)+1}

with respect to the best ordering.

Remember that the distributior(-) and, in particulargo = mini{4; i j,i)+1} are
independent oT . This means that foF large enoughd (&, 2)), the optimale in the theorem
above will be zero, obtaining a constant regret bound wisipeet toT. Note that to make
this statement it is critical to express the regret boun@ims ofA; i) ;,i)+1 rather than in
terms of4; ;1 to handle the case wherf; 1 = 0 for somei, and ensure tha is bounded
away from 0.
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2.1.2 Lower Bound

In this section, assuming that the meansre bounded away from 0 and 1, we prove that
FTAL's regret presented in the section above is optimal (up tstemm factors). This is
done by showing the following lower bound on the regret gt of any algorithm. Let
Bernoulli(p) denote the Bernoulli distribution with megm We useKL(p;qg) to denote the
KL-divergence of two distributions, and for the case of Beiiti distributions with means

p andy’, we use the notatioL (u; p’) instead of writing a somewhat more wordy notation
KL(Bernoulli(tt),Bernoulli(i')). Please refer to (Karp & Kleinberg, 2007) and (Cover &
Thomas, 1999) for an introduction to KL-divergence.

Lemma7 Let R = Bernoulli(y;) for i = 1,2,...,n be the payoff distributions witp; €
(a,B) forsomed < a < 3 < 1('s can be relaxed to lie in thelosedinterval [a, B]). Let
@ be any algorithm for the stochastic best expert model. Tieme is an input instance with
n arms endowed with some permutation of the aforementioiséttbdtions(Py, P, ..., Py),
such that the regret ap up to time T is at least

n-1 1
Q
i; A

whenever T> Ty, where § is a function of n{p1, g, ..., Un), o, and 8.

To prove this lemma, we first prove its special case for the caswvo experts.

Lemma 8 Let R = Bernoulli() for i = 1,2 be payoff distribution withus, 1 € (a, ),

U > o, and0 < a < B < 1. Let g be an online algorithm for the stochastic best expert
problem with two experts. Consider two instancesard b for the stochastic best expert
setting: In both instances, there are two experts namelyd-Rnin I, (L, R) are endowed
with reward distributiongP;, ) and in b, they are endowed wit{P, P;). Then the regret
of algorithm¢ on at least one ofilor |5 is

Qs

whenever T> To, whered = L3 — iz, To is a function of uy, 1), o, and3, and the constants
inside theQ(-) may depend on, 3.

Proof Let us define some joint distributionpis thejoint distribution in which both experts
have payoff distributiorP;, q_ is the distribution in which they have payoff distributions
(P, P,) (left is better), andyr is the distribution in which they have payoff distributions
(P, P1) (right expert is better).

LetTo = 5—°2 forc= w andT > To. We will prove that ifg runs forT
rounds, then for one the instanagsor gr, it will suffer at leastQ (1) regret.

Let us define the following event&}- is true if ¢ picksL at timet, and similarlyER.

We denote byp!(-) the distribution induced by on thet-step histories, where the distri-
bution of rewards in each time periodg§:). Similarly for qf (-). We havep![E-] + p'[ER] =
1. Therefore, for every, there existaVl € {L,R} such thatp'[EM] > 1/2. Similarly, there
existsM € {L,R} such that

Ht:l<t<T, pt[EtM}>%H>;
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Without loss of generality, assume tHdt= L. Now assume the algorithm faces the in-
put distributionggr, and defineq = gr. Using KL(:;-) to denote the KL-divergence of two
distributions, we have

KL(p ") <KL(p;q") =T -KL(p;q) = c6 2 KL(1; M)

62 1
S_v

<00 T a) BB} = 50

by the choice ot.
Karp and Kleinberg (2007) prove the following lemma. If thés an evenE with
p(E) > 1/3 andq(E) < 1/3, then

1 1

KL(p;d) > %'n (W) s (11)

We have that for at leadt/2 values oft, p'(E-) > 1/3 (it is actually at least A2). In such
time steps, we either hawg(E}) > 1/3 or the lemma applies, yielding

1 o1 1 1
- > ) > Zin( — | - =.
50~ (H(Pid)=3hn (qt(EtL)) e

This givesq' (EL) > 1—10. Therefore, the regret of the algorithm in time pertdd at least

VAN WA
H1 10 T 10M2 ) = 10°
SinceT = Q(572), we have that the regret is at least
L5062 =0EY
10 '

This finishes the proof of the lower bound for two experts. \Wgtiprove the lower bound
for n experts.

Proof of Lemma 7: Let us group experts in pairs of 2 6& —1,2i) fori =1,2,...,|n/2|.
Apply the two-expert lower bound from Lemma 8 by creating aeseof time steps when
A = {2i — 1,2i} for eachi. (We need a sufficiently large time horizon — namély>
z}ﬂ/lzj cAy2, 5 — in order to apply the lower bound to alh/2] two-expert instances.)
The total regret suffered by any algorithm is the sum of reguéfered in the independent
[n/2] instances defined above. Using the lower bound from Lemma 8etithat the regret
suffered by any algorithm is at least

/2] 1
Q .
i; <A2i71,2i )

Similarly, if we group the experts in pairs according(®,2i + 1) fori =1,2,...,|n/2],

then we get a lower bound of
[n/2] 1
Q .
izi (AZi,2i+1)
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Since both of these are lower bounds, so is their averagehvidi

(5 -a(Fan)

This proves the lemma. ad

2.2 Multi-Armed Bandit Setting

We now turn our attention to the multi-armed bandit settiggiast a stochastic adversary.
We first present a variant of tHéCB1 algorithm (Auer et al., 2002a), and then present a
matching lower bound based on an idea from Lai and Robbir35)19

2.2.1 Upper Bound (AlgorithmAUER)

Here the optimal algorithm is again a natural extension efx6B1 algorithm (Auer et al.,
2002a) to the sleeping-bandits case. In a nutshell, theidigokeeps track of the running
average of payoffs received from each arm, and also a cocfidaterval of width (radius)

Pit = /8Int around armyj, wheret is the current time interval ang ; is the number of times

j’'s payoff has been observed (number of times gimas been played). At tintg if an arm
becomes available for the first time then the algorithm chsds Otherwise the algorithm
optimistically picks the arm with highest “upper estimated/ard” (or “upper confidence
bound” in UCB1 terminology) among the available arms. That is, it picksadh® j € A;
with maximum f1j ¢ + pj: Whereflj; is the mean of the observed rewards of grmp to

timet, andpj; = 8'”‘ is the width of the confidence interval around ajrat timet. The

algorithm is shown |n Figure 2. The algorithm is calladvake Upper EstimatedReward
(AUER).

1 Initialize z = 0 andn; = 0 for alli € [n.
2 fort=1to T do

3 if 3j € Acs.t. p =0then

4 Play armx(t) = j

5 else

6 Play armx(t) = arg maxea, ( + Slogt)
7 end

8 Observe payoff, (t) for armx(t)

9 Zy(t) < Zyt) +Ixy (1)

10 Nyt) < Nx(t) +1
11 end
Algorithm 2: The AUER algorithm for the sleeping bandit problem with a stochastic
adversary.

We first need to state a claim about the confidence intervatsatd are using.
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Lemma 9 With the definition of n, i, 4, and pig = | /3

1<i<nandl<t<T:

the following holds for all

N N N 1
IF’[M € [l —pig, Bi +P|.,t]} = P[I-li,t €[l —pigt, K +pi,tﬂ >1- @

Proof The equality follows since the two events are the same. Theff inequality is
an application of Chernoff-Hoeffding bounds, and followsr (Auer et al., 2002a, pp.
242-243).

Theorem 10 For problem instances with; ;1 > Ofori=1,2,...,n—1, the regret of the
AUER algorithm is at most

66InT + (1
( AI |+l

uptotimeT.

The theorem follows immediately from the following lemmaddremma 4. Note that we
are only considering problem instances in which differemisahave different means. This
restriction will be removed at the end of this section, wheegresent a general bound, and
the above theorem will follows as a special case of the géresalt.

Lemma 11 For problem instances with; ;.1 >0fori=1,2,...,n—1, theAUER algorithm
has a regret of at most

n j—1
(33INT + (1) ;Zl(N)A..H,

uptotimeT.

Proof We bound the regret of the algorithm arm by arm. Let us considearm 2< j <n.
Fori < j, let us count the numbey; ; of times j was played when some arm in2l.... i
was awake. (In these iterations, the regret accumulatedéastd; ; and at mosty | )We
claim thatE|N; j] < Q; j, whereQ | : 3—3'2@

We want to claim that after pIaymgfor Qi,j number of times, we are unlikely to make
the mistake of choosinginstead of something from the st 2. .. ,i}; that is, if the set of
awake arms at timeincludes some arm ifi] as well as arnj, then with probability at least
1- t% some awake arm ifi] will be chosen rather than arin

Let us bound the expected number of times chosen whe N[i] # 0 andj has
already been playe@; j number of times.

IP>[(><t = j) A(j is playeds-th time)A (A N [i] # 0)}

Qj j<S<t<T

< Y Ploe=DAM=9A (M (Bie+Pie > e+ Pr)) |

Qj,j<s<t<T

. i N 8Int _ .
= > P {(xt =) ANz =9A <VL_1 (u;,tﬂ/T > uk,wpK,t)ﬂ
Qi j<S<t<T
i N 8Int _ .
< > P {VL_1 (Ui,t Ty 5 = H +Pk,t>
Qj j<s<t<T

(12)
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Let us define the event inside the probability expressiof;and defineE;, to be the event
that fi; € [k — Pxt, M+ Pxg) forallke {j1u{1,2,...,i}. (AlthoughE; andE, depend on
s andt, we suppress this dependence for notational convenienbe.probability of event
E; is at least 1- (i 4+ 1)t~ (from Lemma 9).

We will bound use the probability &; by conditioning it on the evertf,. We can write
P[E;] = P[E1|Eo]P[Ep] + P[E1|ESIP[ES] < P[E1|Es] + P[ES]. To boundP[E;|Ey], notice that

the confidencep; of arm j is at most, / 8T . A2, < %41

If eventE, happensjijt +pjt < (K +pjt) +Pjt < Hj+4ij = pi- Also, flit + Pt > i
forallk=1,2,...,i. Therefore, the sum in (12) can be upper-bounded by follgwin

; N 8int _ .
Z P | Vg | B2+ \/ Ta = Hkt+ Pkt
Qj,j<s<t<T S

< Y (Pl tpia > Hol) +
Qi j<S<t<T Qi j<S<t<T
N i+1 .
< z P[U],terj,t Z“l}‘f’ Z t—4 (SlnceIleIJzZ”-zui,)
Qj,j<s<t<T Qi j<St<T

Eo

+1P’[E§]>

i+1
t4

< ¢(nT2) (The first term is zero, since
fjt+pjt < ui, see above.)
=0(1).

Therefore, aftefj has been playe@; ; number of times, the expected number of additional
times thatj is played wherA; N [i] # 0 is bounded above by a constant. This implies

33In(T)

ENijl <Qij+0(1) < —m—+0(1).
1]

Now, it is easy to bound the total regret of the algorithm, chtis

E [,i:zi(NiJ - Nil,i)Ai,j:| = Ji:ziNi’j (B0 — i1, (13)

which follows by regrouping of terms and the convention tgf = 0 andA; ; = 0 for alll
j. Taking the expectation of this gives the regret bound of

(33InT + (1) i]i( ) (Aij —Dirsj)-

This gives the statement of the lemma.

Remarks for smally ;1 As noted in the case of the expert setting, the upper boundeabo
becomes very weak if sont i1 are small. In such a case, the proof can be modified by
changing equation (13) as follows.

1

i

=}

(Nu Ni-1,j)4 ]

.J\/I

ig(i) jfl

n
21 NIJ Ni— 1,j Alj + ; (Ni_’j —Nifl_’j)Ai_’j
j=2i i=i

S

=}
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< ilzi Nijdijt1 + zzN.E it 22 J 1 Nl,j*Ni—l,j)f
I= |g

< ilzl Nijdiis1 + s;N.s ;(Nl 1i = Nig(j).j)

< Nijdijit1 + €T,

l§|<1§n,A,_J >€

where the last step follows frorz’j‘:2 Nj_1j <T.
Taking the expectation, and using the Lemma 5, we get theviolly regret bound for
AUER algorithm.

Theorem 12 For any ¢ > 0, the regret of théAUER algorithm is at most

n 33InT + (1) o@=1 " 33InT + ¢(1)

T+ ,
=iy 1 Max{E; Aig(j)-1ig() i; max{e, Aj i) jo(i)+1}

uptotimeT.

2.2.2 Lower bound

In this section, we prove that th®UER algorithm presented is information theoretically
optimal up to constant factors when the numbgrs— the mean payoffs of arms — are
bounded away from 0 and 1. We do this by presenting a lowerdotin

NESEN

for this problem. This is done by closely following the loweound of Lai and Robbins
(1985) for two-armed bandit problems. The difference ig ttea and Robbins prove their
lower bound only in the case wh@nh— oo, but we want to get bounds that hold for finite
Our main result is stated in the following lemma.

Lemma 13 Let R = Bernoulli(;) fori =1,2,...,n be payoff distributions witpy; € (a, 3)

for somel < a < 8 < 1. Letg be an algorithm for picking among n arms such that for all t,
the expected number of time@plays a suboptimal bandit up to time t is bounded above by
c1t®! + ¢, (¢ and @ possibly depend op;). Then, there is an input instance with n arms
endowed with some permutation of the aforementioned bligions (R)_;, such that the

regret of g is at least
n-1
(logT) (ki — Hi+1)
Q — - |
(i; KL(His1; Hi)

for T > Tg, where T is a function of ny;, ¢, o, a, B.

We note that the exponentl0in the lemma is quite arbitrary. Indeed, any nonzero ex-
ponent would work for the purpose of the proof.

Note that the above lower bound without ttiegT) factor follows from the stochastic
best expert lower bound in Lemma 7.
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Using the fact that fog; € (a,B), KL(Kj; ti) = Oq g (Ai?j), the lower bound can also

be stated as
"< (logT)
Q — ],
ok (,Zl JATRER)

which matches (up the constant factors) the upper bound @ofBm 10. Note that the
notationsgy g(-) andQq g(-) hide dependence amand.

We first prove the result for two arms. For this, in the follogj we extend the Lai and
Robbins result so that it holds (with somewhat worse comstdor finite T, rather than only
inthe limit T — oo.

Lemma 14 Let R = Bernoulli(y;) for i = 1,2 with tp < g, W € (a, ) fori = 1,2 and
0< a < B <1 Lete be any algorithm for choosing among two arms which neverspick
the worse arm (for any values gf and i, in (a, 8)) more than g% + ¢, times up to time

t (c1 and @ possibly depend op; and ). Then there exists an instance with two arms
endowed with two distributions above (in some order) suehttie regret of the algorithm

¢ when presented with this instance is at least

1 (('091')(#1*#2))
6\ KL(tzip) /)’

forall T > Tp, and the value of lcan be explicitly computed as a functionaf i, c1,C,

a, B.

Proof From the assumption that and s, are bounded away from 0 and 1, there exists a
Bernoulli distribution with mead > py with

1
| KL(p2;A) — KL(H2; )| < 0 KL(L2; p1),

because of the continuity of KL divergence in its second ergyt. Indeed, using the con-
vexity of KL(tp;-) (for fixed L), and the fact that the slope &fL(py;-) is bounded by

%, A can be chosen to be m{ry1+ %%, %} This claim provides us
with a Bernoulli distribution with meai (which is an explicit function ofs and ) such

that
11
KL(H2;A) < E'KL(Hziul)- (14)

From now on, until the end of the proof, we work with the foliog two distributions on
T-step historiesp is the distribution induced by the algorithgnplaying against Bernoulli
arms with meansgp, (), andq is the distribution induced by playing against Bernoulli
arms with meanspi, A ). From the assumption of the lemma, we have

Eq[T — n2,T] < C]_To’l +Co.

Note thatc; andc; here are functions gfi; andA (which in turn is a function ofi;, a, B).
By an application of Markov’s inequality, we get that

9 E [T—I’IQT]
P, — (logT)/KL(t2;A)| < d ’
q |n21 < 75(109T)/KL(12iA) | < —— 3 (1ogT)/ KL(H2iA)
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C1 O'l+02 5/(9KL(p2;A
< =7 T H2:A))
1/2 (for > € )

<4gT 0% (for T > (cp/cp)9)
(15)

Let & denote the event thapt < =%(logT)/KL(pi2;A). If Pp(&) < 1/3, then

Eplior) > Po(@) - 75 (10gT) /KL(1.1)

29 logT
~ 3 10 KL(ug2,A)
2 9 logT

~ 3 11 KL(; )’

which implies the stated lower bound.
Henceforth, we will assumi, (&) > 1/3. We havePy(&’) < 1/3 using (15). Now ap-
plying the lemma from (Karp & Kleinberg, 2007) stated in (14 have

1 1 1

. > - —

KL(p:q) = 3 In (3-401T*0~9) e
1

= 50.9InT - (% + % |n(12c1)>

=(0.3)InT — (% In(e3/ecl)> . (16)
The chain rule for KL divergence (Cover & Thomas, 1999, Tkeo2.5.3) implies
KL(p;q) = Ep[n27] - KL(pi2; ) a7
Combining (16) with (17), we get
(0.3)InT — $In(e¥®cy)

Eplnzr] > KLt )
.03 InT 1 In(e/ecy)
T LIKL(Hg 1) 3KL(H2; )
3 In(T)  1In(e¥cy)
11KL(Hz; 1) 3 KL(H2; pa)
3 In(T) 1 In(T) 3/e~ 110/3
> — - for T > (e”®c
T 11KL(p2 1) TOKL(ph2; pa) ( (7)™
1 In(T)
>~/
6 KL(2; 1)

This gives the required regret bound. The explicit valud@ above which the bound holds
is

10
To = max{e5/(9KL<uz;/\))’ (%) , (e3/ecl)1°/3},
C1

which can be explicitly written as a function af, i, c1, ¢, a, B.
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We now extend the result from 2 tobandits.

Proof of Lemma 13: A naive way to extend the lower bound is to divide the time line
betweenn/2 blocks of length Z/n each and us@/2 separate two-armed bandit lower
bounds as done in the proof of Lemma 7.

We can pair the arms in pairs @i — 1,2i) fori =1,2,...,|n/2|. We present the algo-
rithm with two arms 2— 1 and 2 in thei-th block of time. The lower bound then is

o(a(3) 3 (iess))

We get a similar lower bound by presenting the algorithm W&ih2i + 1):

0 Iog<I> L<nl)/zj( i — Hai 41 ) _
n i; KL (Hai+1; Hai)

Taking the average of the two lower bounds dng n? gives the required lower bound of

" (logT) (1 — pi1)
Q(; KL (ki 15 i) )7

finishing the proof of the lemma. ad

3 Adversarial Model of Rewards

We now turn our attention to the case where no distributiasalimptions are made on the
generation of rewards. We consider in turn the best expgimgand the multi-armed bandit
setting. For each setting, we first prove information théodewer bounds on the regret of
any online learning algorithm, and then present onlinerilyms whose regret is within a
constant factor of the lower bound for the expert settingwitkin a sub-logarithmic factor
of the lower bound for the bandit setting. Unlike in the stasfic rewards setting, however,
these algorithms are not computationally efficient. It isopen problem if there exists an
efficient algorithm whose regret grows @$T~¢n°) for some positive constantsc.

3.1 Best Expert Setting

In this section, we consider the adversarial sleeping bgstre setting. Recall that in the
sleeping best expert setting, the algorithm chooses antaxga@ay in each time round from
the set of available experts, and at the end of the round,tgetserve the rewards afl
available experts for that round, not just for the one it éhd$ere is no assumption on how
the rewards of these experts are generated in each rouredrah adversary chooses the
reward of each expert in each time round, and can observéithiess made by the algorithm
prior to that round in choosing the rewards for a particutamnd. Additionally, the adversary
also chooses which subset of the experts will be awake ébla)lin each time round.

We first present a lower bound on the achievable regret of lyayithm for the adver-
sarial sleeping best expert problem.
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Theorem 15 For every online algorithmALG and every time horizon T, there is an adver-
sary such that the algorithm’s regret with respect to thetloedering, at time T, is

Q(+/Tnlog(n)).

Proof We construct a randomized oblivious adversary (i.e. ailligion on input sequences
of length T) such that the regret of any algorithALG is at leastQ(,/Tnlog(n)). The
adversary partitions the timeliqd, 2, ..., T} into a series ofwo-expert games.e. intervals
of consecutive rounds during which only two experts are anaid all the rest are asleep.
In total there will beQ(n) = @(nlogn) two-expert games, whei@(n) is a function to be
specified later in (19). Far=1,2,...,Q(n), the set of awake experts throughout ithie two-
experts game is a pakl) = {x;,y;}, determined by the adversary based on the (random)
outcomes of previous two-experts games. The precise rukdefe@rmining the elements of
Al will be explained later in the proof.

Each two-experts game runs f&y = T /Q(n) rounds, and the payoff functions for the
rounds are independent, random bijections fré to {0,1}. Letting g (x), g (y;) de-
note the total payoffs of; andy;, respectively, during the two-experts game, it followsiiro
Khintchine’s inequality (Khintchine, 1923) that

E(|g"00)-g" o)) = 2 (Vo). (18)

The expected payoff for any algorithm can be at rr@sso for each two-experts game the
regret of any algorithm is at leagt(/Tp). For each two-experts game we definewtiener

W to be the element dfx;, y; } with the higher payoff in the two-experts game; we will adopt
the convention thatf = x; in case of a tie. Théoser L is the element ofx;,y;} which is
not the winner.

The adversary recursively constructs a sequencg(of two-experts games and an or-
dering of the experts such that the winner of every two-espgame precedes the loser in
this ordering. (We call such an orderinognsistenwith the sequence of games.) In describ-
ing the construction, we assume for conveniencenhsia power of 2. Ifn = 2 then we set
Q(2) = 1 and we have a single two-experts game and an ordering irhvificwinner pre-
cedes the loser. i > 2 then we recursively construct a sequence of games and arirgyd
consistent with those games, as follows:

1. We construc@(n/2) games among the experts in the §eL2, ..., n/2} and an ordering
=<1 consistent with those games.

2. We construcQ(n/2) games among the experts in the $é1/2) +1,...,n} and an
ordering<> consistent with those games.

3. Letk=2Q(n/2). Fori=1,2,...,n/2, we definex; andyx,; to be the-th elements in
the orderings<1, <2, respectively. Thék+i)-th two-experts game uses the A&t =
{Xiis Vi }-

4. The ordering of the experts puts the winner of the gamedwatwy_ ; andyy; before the

loser, forevery =1,2,...,n/2, and it puts both elements Af<*!) before both elements
of A(k+i+l)'

By construction, it is clear that the ordering of expertsaesistent with the games, and that
the number of games satisfies the recurrence

Q(n) =2Q(n/2) +n/2, (19)

whose solution i€(n) = ©(nlogn).
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The best ordering of experts achieves a payoff at least dsdsghat achieved by the
constructed ordering which is consistent with the games(1BY, the expected payoff of
that ordering isT /2+ Q(n) - Q(1/To). The expected payoff oALG in each round is 1/2,
because the outcome of that round is independent of theretof all prior rounds. Hence
the expected payoff oALG is only T/2, and its regret is

Q(n)- Q(1/To) = Q(nlogny/T/(nlogn)) = Q (/T nlogn).
This proves the theorem.

It is interesting to note that the adversary that achievisddwver bound is not adaptive
in either choosing the payoffs or choosing the awake expg¢rsch time step, i.e. it makes
these choices without considering the algorithm’s pasisitats. It only needs to be able to
carefully coordinate which experts are awake based on theffgaat previous time steps.

Even more interesting is the fact that this lower bound isttigo an adaptive adversary
is not more powerful than an oblivious one. There is a leg@ilgorithm that achieves a
regret of7(1/ T nlog(n)). We turn our attention to this algorithm now.

To achieve this regret we transform the sleeping expertblgmo to a problem with
n! experts that are always awake, and we choose among thesgerts using théledge
algorithm (Freund & Schapire, 1999). In the transformedfmm, we have one expert for
eacho-policy (i.e. ordering of the originai experts). At each round, each of thieexperts
makes a prediction according to its correspondinrgolicy, (i.e. the same prediction as the
highest ranked awake expert in the corresponding orderamg) receives the payoff of that
policy (i.e. the payoff of the highest ranked awake expethécorresponding ordering).

Theorem 16 An algorithm that makes predictions using tHedge algorithm on the trans-
formed problem achievas(,/T nlog(n)) regret with respect to the best ordering.

Proof Every expert in the transformed problem receives the pagbffs corresponding
ordering in the original problem. Sind¢edge achieves regret’(,/T log(n!)) with respect
to the best expert in the transformed problem, the sametrisgaehieved by the algorithm
in the original problem. The theorem follows by applying theund logn!) = ¢ (nlogn),
which is a consequence of Stirling’s formula.

In a naive implementation the algorithm described abovéisowsly not computation-
ally efficient since in each round we have to sample amregperts and update weights.
A natural question is whether this algorithm can be implet@@in polynomial time by de-
vising an efficient sampling scheme and a clever weight @pgdetcedure. The following
theorem, unfortunately, shatters any hope that this mightdssible.

Theorem 17 UnlessRP= NP, any learning algorithm for the adversarial sleeping exper
problem that:

1. generates its output by sampling owefpolicies, independently of the set of awake
experts
2. has regret bounded by'T¢ - p(n) for somee > 0 and some polynomial function(

cannot be implemented in polynomial time.
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Proof We prove this theorem via a reduction from the minimum feelllzc set problem
(Garey & Johnson, 1979). The notion of reduction here ism@tsual Karp-reduction, but
we will show that if there is an algorithm with specified cdialis, then we can find the
optimum for any feedback arc set instance with probabilitieast 1— 6 for any constant
0>0.

Let ALG be any algorithm that respects the conditions in the theoWenare given a
directed graptG = (V,A), in which we are to find the minimum feedback arc set. Every
permutation of the vertices defines a feedback arc set, mutrtpping is not one to one.
(There can be many permutations for one feedback arc setg permutationo, the cor-
responding feedback arc set is the set of arcs going fronehigimbered vertices to lower
numbered vertices, i.efa= (u,v) € A: o(u) > o(v)}. The cardinality of this set is denoted
by FAs(o). For a feedback arc sé C A, a corresponding permutation can be found by
choosing one of the topological orderings of the gréBhA\ A'). It is easy to see that the
minimum feedback arc set is equal to mires(o). We will use the learning algorithiALG
to find, with high probability, an ordering minimizing FAs(o).

We instantiate an adversarial sleeping experts problein [Wit experts, one for each
vertex in the graph. In each round, the adversary selects@atua/) in A uniformly at
random and makes the two experts corresponding to the (waahd the tail(u) of the
selected arc awake and all the other experts asleep. It #satiates a payoff of 1 to the
expert corresponding to the tail of the arc and a payoff oftbécexpert corresponding to the
head of the arc. We play far := 2((%] p(n)m)¥¢ rounds and in each round we record the
o-policy selected byALG and also the feedback arc set value of the permutatioft the
end of theT rounds we choose the best permutation among treinds — the one with the
smallestFAs(o) value — and output the corresponding feedback arc set. Sgwithim 3.

1 Leto =(1,2,...,|V|) (current best permutation) amd= FAS(o) (value of the best feedback arc se
so far).
2 fort=1t0o T=2([}]p(nm)/¢ do
3 Choose(u,v) € A at random frommarcs inA. Let {u,v} be the set of awake experts. Set the
payoff ofuto 1 and the payoff of to 0.

4 Record the permutatiod; that the algorithmALG outputs.
5 if x> FAS(0t) then

6 g «— Ot

7 X FAS(O’[)

8 end

9 end

10 Output{a= (u,v) € A: o(u) > g(v)} as the feedback arc set.

Algorithm 3: Algorithm to solve Feedback Arc Set Problem from low regréver-
sarial expert algorithm.

LetFAS, be the optimum value of the feedback arc set.d_ée the permutation selected
by Algorithm 3. We claim thaFAs(o) = FAS, with probability at least 1 d. Since the
number of rounds is polynomial imandm (¢ andd are constants), this will solve feedback
arc set in randomized polynomial time.

Since the expected regret of the algorithm is at fids€ p(n), it follows from Markov’s
inequality that with probability at least-19, the regret is at mongPf p(n). We will prove
that in this event, our algorithm findsaawith FAS(0) = FAS,..

We prove this claim by contradiction. If not, then fora# 1,2,... T, FAS(0;) > FAS, +

FAS(1)

1. The expected reward of choosing a permutatios 1—- ———. Therefore the expected
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regret in each round is at least

() )

Hence, the total regret of the algorithm is at Ie'ﬁst[%]. We also know that the regret is at
most%TPf p(n). This gives the following relation:

T 1.,
—_< =
=357 p(n),

which simplifies toT < (% p(n)m)Y/¢, a contradiction since we have tak&nto be twice

as much. This proves that if we run our algorithm for= 2([%]p(n)m)1/€, then with
probability at least - &, we recover the optimum feedback arc set for the graph. This
proves the theorem.

Note that this does not mean that there does not exist areeffi¢ow regret algorithm
for the adversarial sleeping experts problem. One mightotesta design an efficient, low
regret algorithm that either does not sample awggolicies, or makes the sampling depen-
dent on the set of awake experts. For instance, there exsstspde algorithm that achieves
low regret against the particular adversary used in thef@ioave: run a separate instance of
the Hedge algorithm for every pair of experts and, in each round, usdribtance ofHedge
corresponding to the two experts that are awake. Since tersaty will only present the
algorithm with two awake experts at a time, this algorithm edways make a prediction,
and its regret will be bounded hy(v'T - n).

3.2 Multi-Armed Bandit Setting

Finally, we consider the adversarial sleeping multi-arrhaddit setting. Recall that in the
sleeping multi-armed bandit setting, the algorithm checse arm to play in each round
from the set of available arms, and at the end of the round, tgetbserve the rewards of
the chosenarm (unlike best expert setting, where the algorithm olesethie reward of all
potential choices). There is no assumption on how the remafrthese arms are generated
in each round. Additionally, an adversary also chooses lwhitbset of arms will be awake
(available to be chosen by the algorithm) in each round.

We first present a lower bound on the achievable regret of lyayithm for the adver-
sarial sleeping multi-armed bandit problem.

Theorem 18 For every online algorithmALG and every time horizon T, there is an adver-
sary such that the algorithm’s regret with respect to thetbegering, attime T, i€2 (ny/T).

Proof To prove the lower bound we will rely on the lower bound proof the standard
multi-armed bandit when all the bandits are awake (Auer.e28D2b). In the standard “all-
awake” bandit setting with a time horizon @f, any algorithm will have at leag® (1/Ton)
regret with respect to the best bandit. To ensure this reifpeeinput sequence is generated by
samplingTp times independently from a distribution in which every biabdt one receives
a payoff of 1 with probability% and 0 otherwise. The remaining bandit, which is chosen at
random, incurs a payoff of 1 with probabili%H— ¢ for an appropriate choice af

To obtain the lower bound for the sleeping bandits settingseteup a sequence af
multi-armed bandit games as described above. Each gameuwilbr To = % rounds. The
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bandit that received the highest payoff during the gameheitlome asleep and unavailable
in the rest of the games.

In gamei, any algorithm will have a regret of at Iea@t(, / %(nf i)) with respect to

the best bandit in that game. Consequently, the regret ofieanging algorithm with respect
to the best ordering is bounded below by a positive consitaetstthe following expression:

Tim_ \/?J]Zijl/z = \/§/>(:;1x1/2dx: g\/§ (n-1%2=0 (nx/ﬂ .

The theorem follows.

Let us now turn our attention to getting an algorithm for theexsarial sleeping multi-
armed bandit problem. To get an upper bound on regret, weusdltheExp4 algorithm
(Auer et al., 2002b). SincExp4 only works against oblivious adversaries, in what follows
we will also assume an oblivious adversary (i.e. the rewtoddsach arm at each round do
not depend on the past choices of the algorithm).

Exp4 chooses an arm by combining the advice of a set of “expertsaéh round, each
expert provides advice in the form of a probability disttibn over arms. In particular the
advice can be a point distribution concentrated on a sirglera (It is required that at least
one of the experts is theniform experivhose advice is always the uniform distribution over
arms.)

To useExp4 for the sleeping experts setting, we concokt- 1 “experts”, one corre-
sponding to the “uniform” expert which chooses each arm wihal probability, and one
each forn! orderings. The expert corresponding to an ordednglways “advises” to play
the armo (A;) (first available arm in its ordering), i.e., in each round #uvice of expertr
is a point distribution concentrated on the highest rankedia the corresponding ordering
g.

This introduces a slight problem. Since the uniform expeay rmdvise us to pick arms
which are not awake, we assume for convenience that theithlgr is not restricted to
choose an action from, (awake set), but is allowed to choose any action at all, vhiéh t
proviso that the payoff of an action in the complemenidpis defined to be 0. Note that
any algorithm for this modified problem can easily be tramsfed into an algorithm for the
original problem: every time the algorithm chooses an acitiothe complement ofy we
instead play an arbitrary action & (and don’t use the feedback obtained about its payoff).
Such a transformation can only increase the algorithm’sofiaie. decrease the regret.
Hence, to prove the regret bound asserted in Theorem 19 hiekwffices to prove the same
regret bound for the case when algorithm is allowed to chaosam in complement %
with zero payoff.

Theorem 19 TheExp4 algorithm as described above achieves a regreg70fi\/T log(n))
with respect to the best ordering, against an oblivious astvey.

Proof We haven arms and % n! experts, so the regret @&kp4 with respect to the payoff of
the best expertig’(1/Tnlog(n! + 1)) (Auer et al., 2002b). Using the estimate (o 1) =
o(nlogn), this regret bound can be rewritten @gn./Tlogn). Since the payoff of each
expert is exactly the payoff of its corresponding orderiwg, obtain the statement of the
theorem.
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The upper bound and lower bound differ by a factoredf,/log(n)), the gap result-
ing from adapting the Exp4 algorithm to our setting. In thassical multi-armed bandit
setting, Audibert and Bubeck (2009) closed a similar gap(Tnlogn) upper bound ver-
susQ(v/Tn) lower bound) by improving the Exp3 algorithm. It is not cléaw the poli-
cies from (Audibert & Bubeck, 2009) can be adapted for Exgbathm, so closing the
0(y/logn) gap in the sleeping multi-armed bandit problem setting iesnan important
open problem.

4 Conclusions

We have analyzed algorithms for full-information and pafthformation prediction prob-
lems in the “sleeping experts” setting, using a novel berattimvhich compares the algo-
rithm’s payoff against the best payoff obtainable by sébecavailable actions using a fixed
total ordering of the actions. We have presented algorittuingse regret is information-
theoretically optimal in both the stochastic and adveatadses. In the stochastic case, our
algorithms are simple and computationally efficient. Inddeersarial case, the most impor-
tant open question is whether there is a computationallgieffi algorithm which matches
(or nearly matches) the regret bounds achieved by the ergiakime algorithms presented
here.
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