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Abstract We study on-line decision problems where the set of actions that are available
to the decision algorithm varies over time. With a few notable exceptions, such problems
remained largely unaddressed in the literature, despite their applicability to a large number
of practical problems. Departing from previous work on this“Sleeping Experts” problem,
we compare algorithms against the payoff obtained by thebest orderingof the actions, which
is a natural benchmark for this type of problem. We study boththe full-information (best
expert) and partial-information (multi-armed bandit) settings and consider both stochastic
and adversarial rewards models. For all settings we give algorithms achieving (almost)
information-theoretically optimal regret bounds (up to a constant or a sub-logarithmic
factor) with respect to the best-ordering benchmark.

Keywords Online algorithms· Computational learning theory· Regret

1 Introduction

In on-line decision problems, or sequential prediction problems, an algorithm must choose,
in each of theT consecutive rounds, one of then possible actions. In each round, each
action receives a real valued positive payoff in[0,1], initially unknown to the algorithm.
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At the end of each round the algorithm receives some information about the payoffs of the
actions in that round. The goal of the algorithm is to maximize the total payoff, i.e. the sum
of the payoffs of the chosen actions in each round. The standard on-line decision settings
are thebest expertsetting (or the full-information setting) in which, at the end of the round,
the payoffs ofall n strategies are revealed to the algorithm, and themulti-armed bandit
setting (or the partial-information setting) in which onlythe payoff of the chosen strategy
is revealed. Customarily, in the best expert setting the strategies are calledexpertsand in
the multi-armed bandit setting the strategies are calledbanditsor arms. We useactionsto
generically refer to both types of strategies, when we do notrefer particularly to either.

In the prior-free setting (as is the case in this paper), the performance of the algorithm is
typically measured in terms ofregret. (See (Gittins, 1979), (Gittins & Jones, 1979) for max-
imization of expected reward in the Bayesian setting.) The regret is the difference between
the expected payoff of the algorithm and the payoff of a single fixed strategy for selecting
actions. The usual single fixed strategy to compare against is the one which always selects
the expert or bandit that has the highest total payoff over the T rounds in hindsight.

The usual assumption in online learning problems is that allactions are available at all
times. In many applications, however, this assumption is not appropriate. In network routing
problems, for example, some of the routes are unavailable atsome point in time due to router
or link crashes. Or, in electronic commerce problems, itemsare out of stock, sellers are not
available (due to maintenance or simply going out of business), and buyers do not buy all
the time. Even in the setting that gave multi-armed bandit problems their name, a gambler
playing slot machines, some of the slot machines might be occupied by other players at any
given time.

In this paper we relax the assumption that all actions are available at all times, and allow
the set of available actions to vary in an adversarial way from one round to the next, a model
known as “predictors that specialize” or “sleeping experts” in prior work. The first founda-
tional question that needs to be addressed is how to define regret when the set of available
actions may vary over time. Defining regret with respect to the best action in hindsight is
no longer appropriate since that action might sometimes be unavailable. A useful thought
experiment for guiding our intuition is the following: if each action had a fixed payoff distri-
bution that wasknownto the decision-maker, what would be the best way to choose among
the available actions? The answer is obvious: one should order all of the actions accord-
ing to their expected payoff, then choose among the available actions by selecting the one
which ranks highest in this ordering. Guided by the outcome of this thought experiment, we
define our base to be the best ordering of actions in hindsight(see Section 1.1 for a formal
definition) and contend that this is a natural and intuitive way to define regret in our setting.
This contention is also supported by the informal observation that order-based decision rules
seem to resemble the way people make choices in situations with a varying set of actions,
e.g. choosing which brand of beer to buy at a store.

We prove lower and upper bounds on the regret with respect to the best ordering for
both the best expert setting and the multi-armed bandit setting. We first explore the case
of a stochastic adversary, where the payoffs received by action i at each time step are in-
dependent samples from an unknown but fixed distributionPi(·) supported on[0,1] with
meanµi . (Note that in this paper, the choice of which actions are available to be picked
in each round is always adversarial. In other words, there isno distributional assumption
on the subset of available actions.) Assuming thatµ1 > µ2 > · · · > µn (and the algorithm,
of course, does not know the identities of these actions) we show that the regret of any

learning algorithm will necessarily be at leastΩ
(

∑n−1
i=1

1
µi−µi+1

)

in the best expert setting,
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andΩ
(

log(T)∑n−1
i=1

1
µi−µi+1

)

in the multi-armed bandit setting if the game is played forT

rounds (forT sufficiently large1). We also present efficient learning algorithms for both set-
tings. For the multi-armed bandit setting, our algorithm, calledAUER, is an adaptation of the
UCB1 algorithm in Auer et al. (2002a), which comes within a constant factor of the lower
bound mentioned above. For the expert setting, a very simplealgorithm, called “follow-the-
awake-leader”, which is a variant of “follow-the-leader” (Hannan, 1957; Kalai & Vempala,
2005), comes within a constant factor of the lower bound above. While our algorithms are
adaptations of existing techniques, the proofs of the upperand lower bounds hinge on some
technical innovations.

For the lower bound in stochastic multi-armed bandit setting, we must modify the classic
asymptotic lower bound proof of Lai and Robbins (Lai & Robbins, 1985) to obtain a bound
which holds at all sufficiently large finite times. For the stochastic best expert setting, we
adapt standard KL-divergence arguments to prove a precise lower bound that also holds for
sufficiently large finite times. Our lower bounds in Lemma 8 and Lemma 14 don’t refer
to the “sleeping” version of the problem, and concern the classical best-expert setting and
multi-armed bandit setting (all actions available), whichmight be of interest outside the
context of this paper.

To prove that our lower and upper bounds are within a constantfactor of each other
we use a novel lemma (Lemma 4) that allows us to relate a regretupper bound arising from
application ofUCB1 to a sum of lower bounds for two-armed bandit problems (and similarly
in the best expert setting).

Next we explore the fully adversarial case where we make no assumptions on how the
payoffs for each action are generated (in particular, they could depend on the time horizon
T). This model has been extensively studied in both the best expert setting and the multi-
armed bandit setting (see (Littlestone & Warmuth, 1994), (Auer et al., 2002b) and references
therein). For the variant in which only a subset of the actions are available at any given time,
we show that the regret of any learning algorithm must be at leastΩ (

√

Tnlog(n)) for the
best expert setting andΩ (

√
Tn2) for the multi-armed bandit setting. We also present simple

variants of algorithms in (Littlestone & Warmuth, 1994) and(Auer et al., 2002b) whose
regret is within a constant factor of the lower bound for the best expert setting, and within
O(
√

log(n)) of the lower bound for the multi-armed bandit setting.
The fully adversarial case, however, proves to be harder, and neither algorithm is com-

putationally efficient. To appreciate the hardness of the fully adversarial case, we prove that,
unless RP= NP, any low regret algorithm that learns internally a consistent ordering over
experts can not be computationally efficient. Note that thisdoes not mean that there can
be no computationally efficient, low regret algorithms for the fully adversarial case. There
might exist learning algorithms that are able to achieve lowregret without actually learning
a consistent ordering over experts. Finding such algorithms, if they do indeed exist, remains
an open problem.

1.1 Terminology and Conventions

We assume that there is a fixed pool of actions,{1,2, ...n}, with n known. We will sometimes
refer to an action byexpert in the best expert setting and byarm or bandit in the multi-

1 As is the convention in the literature, the problem instanceis not allowed to depend onT in the stochastic
setting. In other words, first the distributionsPi(·) are chosen, and then we look at regret bounds as a function
of T.
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armed bandit setting. At each time stept ∈ {1,2, ...,T}, an adversary chooses a subsetAt ⊆
{1,2, ...,n} of the actions to be available. The algorithm can only chooseamong available
actions, and only available actions receive rewards. The reward received by an available
actioni at timet is r i(t) ∈ [0,1].

We will consider two models for assigning rewards to actions: a stochastic model and an
adversarial model. (In contrast, the choice of the set of awake experts is always adversarial.)
In the stochastic model the reward for armi at timet, r i(t), is drawn independently from a
fixed unknown distributionPi(·) with bounded support and meanµi . In the adversarial model
we make no stochastic assumptions on how the rewards are assigned to actions. Instead, we
assume that the rewards are selected by an adaptive adversary. The adversary is potentially
but not necessarily randomized.

Let σ be an ordering (permutation) of then actions, andA a subset of the actions. We
denote byσ (A) the action inA that is highest ranked inσ . A σ -policy corresponding to
the orderingσ is the policy that selects, at each time stept, the actionσ (At) (i.e. available
action that is highest ranked byσ ). The reward of a policyσ is the reward obtained by the
selected action at each time step:

rσ (1 : T) =
T

∑
t=1

rσ(At )(t) (1)

Let rmax(1 : T) = maxσ rσ (1 : T) (maxσ E[rσ (1 : T)] in the stochastic rewards model)
be the reward obtained by the bestσ -policy (ordering), which is also called the benchmark.
Note that in the stochastic reward model, the expectation istaken before taking the maximum
over all orderings, which corresponds to the “maximum expected” reward, as opposed to the
“expected maximum” reward in the adversarial setting (as isalso done in the literature). We
define the regret of an algorithm with respect to the bestσ -policy as the expected difference
between the reward obtained by the bestσ -policy and the total reward of the algorithm’s
chosen actionsx(1),x(2), ...,x(t):

regretx(1 : T) = E

[

rmax(1 : T)−
T

∑
t=1

rx(t)(t)

]

, (2)

where the expectation is taken over the algorithm’s random choices and the randomness
used in the reward assignment.

1.2 Related Work

Sequential prediction problems.The best-expert and multi-armed bandit problems corre-
spond to special cases of our model in which every action is always available. These prob-
lems have been widely studied, and we draw on this literatureto design algorithms and prove
lower bounds for the generalizations considered here. The adversarial expert paradigm was
introduced by Littlestone and Warmuth (1994), and Vovk (1990). Cesa-Bianchi et al. (1997)
further developed this paradigm in work which gave optimal regret bounds of

√

T(lnn) and
Vovk (1998) characterized the achievable regret bounds in these settings.

The multi-armed bandit model was introduced by Robbins (1952). Lai and Robbins
(1985) gave asymptotically optimal strategies for the stochastic version of bandit problem,
where rewards for each arm are drawn from a fixed distributionin each time step.

Auer et al. (2002a) introduced the algorithmUCB1 and showed that the optimal regret
bounds ofO(logT ·∑n−1

i=1
1

µi−µi+1
) can be achieved uniformly over time for the stochastic
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bandit problem (the arms are arranged such thatµ1 ≥ µ2 ≥ ·· · ≥ µn). For the adversarial
version of the multi-armed bandit problem, Auer et al. (2002b) proposed the algorithmExp3

which achieves the regret bound ofO(
√

Tnlogn), leaving a
√

logn factor gap from the
lower bound ofΩ (

√
nT). Recently, Audibert and Bubeck (2009) proposed aO(

√
Tn) regret

algorithm for the adversarial multi-armed bandit problem closing the sub-logarithmic gap.
It is worth noting that the lower bound holds even for an oblivious adversary, one which
chooses a sequence of payoff functions independently of thealgorithm’s choices.

Prediction with sleeping experts.Freund et al. (1997) and Blum and Mansour (2005) have
analysed the sleeping experts problem in a different framework from the one we adopt here.
In the model of Freund et al., as in our model, a set of awake experts is specified in each
time period. The goal of the algorithm is to choose one expertin each time period so as to
minimize regret against the best “mixture” of experts (which constitutes their benchmark).
A mixture u is a probability distribution(u1,u2, . . . ,un) overn experts which in time period
t selects an expert according to the restriction ofu to the set of awake experts.

In contrast, our work uses a different evaluation criterion, namely the best ordering of
experts. In the special case when all experts are always awake, both evaluation criteria pick
the best expert. Our “best ordering” criterion can be regarded as a degenerate case (limiting
case) of the “best mixture” criterion of Freund et al. as follows. For the orderingσ , we assign
probabilities 1

Z (1,ε ,ε2, . . . ,εn−1) to the sequence of experts(σ (1),σ (2), . . .,σ (n)) where
Z = 1−εn

1−ε is the normalization factor andε > 0 is an arbitrarily small positive constant. The
only problem is that the bounds obtained from (Freund et al.,1997) in this degenerate case
are very weak. Asε → 0, their bound reduces to comparing the algorithm’s performance to
the orderingσ ’s performance only for time periods when expertσ (1) is awake, and ignoring
the time periods whenσ (1) is not awake. Therefore, a natural reduction of our problem to
the problem considered by Freund et al. defeats the purpose of giving equal importance to
all time periods.

Blum and Mansour (2005) consider a generalization of the sleeping expert problem,
where one has a set oftime selection functionsand the algorithm aims to have low regret
with respect to every expert, according to every time selection function. It is possible to
solve our regret-minimization problem (with respect to thebest ordering of experts) by re-
ducing to the regret-minimization problem solved by Blum and Mansour, but this leads to an
algorithm which is neither computationally efficient nor information-theoretically optimal.
We now sketch the details of this reduction. One can define a time selection function for
each (ordering, expert) pair(σ , i), according toIσ ,i(t) = 1 if i �σ j for all j ∈ At (that is,σ
choosesi in time periodt if Iσ ,i(t) = 1). The regret can now be bounded, using Blum and
Mansour’s analysis, as

n

∑
i=1

O

(

√

Ti log(n·n! ·n)+ log(n! ·n2)
)

= O

(

√

Tn2 logn+n2 logn
)

.

This algorithm takes exponential time (due to the exponential number of time selection
functions) and gives a regret bound ofO(

√

Tn2 logn) against the best ordering, a bound
which we improve in Section 3 using a different algorithm which also takes exponential time
but is information-theoretically optimal. (Of course, Blum and Mansour were designing their
algorithm for a different objective, not trying to get low regret with respect to best ordering.
Our improved bound for regret with respect to the best ordering does not imply an improved
bound for experts learning with time selection functions.)
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A recent paper by Langford and Zhang (2007) presents an algorithm called theEpoch-
Greedy algorithmfor bandit problems with side information. This is a generalization of
the multi-armed bandit problem in which the algorithm is supplied with a piece ofside
information in each time period before deciding which action to play. Given a hypothesis
classH of functions mapping side information to actions, the Epoch-Greedy algorithm
achieves low regret against a sequence of actions generatedby applying a single function
h ∈H to map the side information in every time period to an action.(The functionh is
chosen so that the resulting sequence has the largest possible total payoff.) The stochastic
case of our problem is reducible to theirs, by treating the set of available actions,At , as a
piece of side information and considering the hypothesis classH consisting of functions
hσ , for each total orderingσ of the set of actions, such thathσ (A) selects the element of
A which appears first in the orderingσ . The regret bound in (Langford & Zhang, 2007) is
expressed implicitly in terms of the expected regret of an empirical reward maximization
estimator, which makes it difficult to compare this bound with ours. Instead of pursuing this
reduction from our problem to the contextual bandit problemin (Langford & Zhang, 2007),
we propose a very simple bandit algorithm for the stochasticsetting with an explicit regret
bound that is provably information-theoretically optimal.

2 Stochastic Model of Rewards

We first explore the stochastic rewards model, where the reward for actioni at each time step
is drawn independently from a fixed unknown distributionPi(·) with meanµi . For simplicity
of presentation, throughout this section we assume thatµ1 > µ2 > · · ·> µn. That is, the lower
numbered actions are better than the higher numbered actions. Let∆i, j = µi−µ j for all i < j
be the increase in the expected reward of experti over expertj.

We present optimal (up to a constant factor) algorithms for both the best expert and the
multi-armed bandit setting. Both algorithms are natural extensions of algorithms for the all-
awake problem to the sleeping-experts problem. The analysis of the algorithms, however,
is not a straightforward extension of the analysis for the all-awake problem and new proof
techniques are required.

2.1 Best Expert Setting

In this section we study the best expert setting with stochastic rewards. We provide an algo-
rithm and prove matching (up to a constant factor) information-theoretic lower bounds on
the regret of any algorithm.

2.1.1 Upper Bound (Algorithm:FTAL)

To get an upper bound on regret we adapt the “follow the leader” algorithm (Hannan, 1957;
Kalai & Vempala, 2005) to the sleeping experts setting: at each time step the algorithm
chooses the awake expert that has the highest average payoff, where the average is taken
over the time steps when the expert was awake. If an expert is awake for the first time, then
the algorithm chooses it. (If there is more than one such expert, then the algorithm chooses
one of them arbitrarily.) The pseudocode for the algorithm is shown in Algorithm 1. The
algorithm is calledFollow TheAwakeLeader (FTAL for short).

The performance guarantee of the algorithmFTAL is presented in the following theorem.
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Initialize zi = 0 andni = 0 for all i ∈ [n].1
for t = 1 to T do2

if ∃ j ∈ At s.t. nj = 0 then3
Play expertx(t) = j4

else5

Play expertx(t) = argmaxi∈At

(

zi
ni

)

6

end7
Observe payoffr i(t) for all i ∈ At8
zi ← zi + r i(t) for all i ∈ At9
ni ← ni +1 for all i ∈ At10

end11

Algorithm 1 : Follow-the-awake-leader (FTAL) algorithm for the sleeping experts
problem with a stochastic adversary.

Theorem 1 Let ∆i,i+1 > 0 for i = 1,2, . . . ,n−1. ThenFTAL algorithm has a regret of at
most

n−1

∑
i=1

32
∆i,i+1

,

with respect to the best ordering.

Note that we are only considering problem instances in whichdifferent arms have different
average payoffs. Also note that as∆i,i+1 gets close to 0, the regret bound become vacuous.
A general result will be proved in Theorem 6 which will take care of both these restrictions,
and the above theorem follows as a corollary to Theorem 6 by setting ε = 0.

The above theorem follows immediately from the following pair of lemmas. The second
of these lemmas will also be used in Section 2.2.

Lemma 2 Let ∆i,i+1 > 0 for i = 1,2, . . . ,n−1. Then theFTAL algorithm has a regret of at
most

n

∑
j=2

j−1

∑
i=1

8

∆2
i, j

(∆i,i+1 +∆ j−1, j )

with respect to the best ordering.

Proof Let ni,t be the number of times experti has been awake until timet. Let µ̂i,t be expert
i’s average payoff until timet. The Azuma-Hoeffding Inequality (Azuma, 1967; Hoeffding,
1963) says that

P[n j,t µ̂ j,t > n j,t µ j +n j,t∆i, j/2]≤ e
−

n2
j,t ∆2

i, j
8·nj,t = e−

∆2
i, j n j,t

8 ,

and

P[ni,t µ̂i,t < ni,t µi −ni,t∆i, j/2]≤ e
−

n2
i,t ∆2

i, j
8·ni,t = e−

∆2
i, j ni,t

8 .

Let us say that theFTAL algorithm suffers an(i, j)-anomaly of type 1at timet if xt = j and
µ̂ j,t − µ j > ∆i, j/2; note that the definition does not require experti to be awake at timet.
Define i∗t to be the optimal expert at timet (lowest indexed expert inAt). Let us say that
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FTAL suffers an(i, j)-anomaly of type 2at timet if i∗t = i andµi − µ̂i,t > ∆i, j/2; note again
that the definition does not require expertj to be awake at timet. Note that whenFTAL picks
a strategyxt = j 6= i = i∗t , it suffers an(i, j)-anomaly of type 1 or 2, or possibly both. We

will denote the event of an(i, j)-anomaly of type 1 (resp. type 2) at timet by E
(1)
i, j (t) (resp.

E
(2)
i, j (t)), and we will useM(1)

i, j , resp.M(2)
i, j , to denote the total number of(i, j)-anomalies of

types 1 and 2, respectively. We can bound the expected value of M(1)
i, j by

E[M(1)
i, j ]≤

∞

∑
t=1

e−
∆2

i, j n j,t
8 1{ j ∈ At} (3)

≤
∞

∑
n=1

e−
∆2

i, j n

8 (4)

=
1

e∆2
i, j /8−1

≤ 8

∆2
i, j

,

where line (4) is justified by observing that distinct nonzero terms in (3) have distinct values

of n j,t . The expectation ofM(2)
i, j is also bounded by 8/∆2

i, j , via an analogous argument.
Recall thatAt denotes the set of awake experts at timet, xt ∈ At denotes the algorithm’s

choice at timet, andr i(t) denotes the payoff of experti at timet (which is distributed ac-
cording toPi(·)). Recall thati∗t ∈ At is the optimal expert at timet (i.e., the lowest-numbered
element ofAt). We are now ready to bound the regret of theFTAL algorithm. A very crucial
observation that we make next is that when armi∗t is the optimal arm in roundt and arm
xt 6= i∗t is picked by the algorithm, one of the following two events must have happened: ei-
ther the observed reward of armi∗t is muchsmallerthan its actual meanµi∗t , or the observed
reward of armxt is muchlarger than its actual meanµxt . The first one corresponds to an
(i∗t ,xt)-anomaly of type 2, and the second one corresponds to an(i∗t ,xt)-anomaly of type 1.
We split the regret according to this classification, and bound each term in turn.

E

[

T

∑
t=1

(

r i∗t (t)− rxt (t)
)

]

= E

[

T

∑
t=1

∆i∗t ,xt

]

= E

[

T

∑
t=1

1
{

E
(1)
i∗t ,xt

(t)∨E
(2)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

≤ E

[

T

∑
t=1

1
{

E
(1)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

+E

[

T

∑
t=1

1
{

E
(2)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

. (5)

With the convention that∆i, j = 0 for j ≤ i, the first term in (5) can be bounded as follows.

E

[

T

∑
t=1

1
{

E
(1)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

= E

[

T

∑
t=1

n

∑
j=2

1
{

E
(1)
i∗t , j (t)

}

∆i∗t , j

]

(Since the eventE (1)
i∗t , j (t) occurs only

for j = xt .)

= E

[

T

∑
t=1

n

∑
j=2

1
{

E
(1)
i∗t , j (t)

} j−1

∑
i=i∗t

∆i,i+1

]

(6)

≤ E

[

T

∑
t=1

n

∑
j=2

j−1

∑
i=i∗t

1
{

E
(1)
i, j (t)

}

∆i,i+1

]

(Since1
{

E
(1)
i1, j (t)

}

≤ 1
{

E
(1)
i2, j (t)

}

for

i1 ≤ i2 < j.)
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≤ E

[

n

∑
j=2

j−1

∑
i=1

∆i,i+1

T

∑
t=1

1
{

E
(1)
i, j (t)

}

]

=
n

∑
j=2

j−1

∑
i=1

∆i,i+1E[M(1)
i, j ]

≤ ∑
1≤i< j≤n

8

∆2
i, j

∆i,i+1.

Similarly, the second term in (5) can be bounded by

E

[

T

∑
t=1

1
{

E
(2)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

= E

[

T

∑
t=1

n−1

∑
i=1

1
{

E
(2)
i,xt

(t)
}

∆i,xt

]

(Since eventE (2)
i,xt

(t) occurs only for
i = i∗t .)

= E

[

T

∑
t=1

n−1

∑
i=1

1
{

E
(2)
i,xt

(t)
} xt

∑
j=i+1

∆ j−1, j

]

(7)

≤ E

[

T

∑
t=1

n−1

∑
i=1

xt

∑
j=i+1

1
{

E
(2)
i, j (t)

}

∆ j−1, j

]

(For i < j1 ≤ j2,

1
{

E
(2)
i, j1

(t)
}

≥ 1
{

E
(2)
i, j2

(t)
}

.)

≤ E

[

n−1

∑
i=1

n

∑
j=i+1

∆ j−1, j

T

∑
t=1

1
{

E
(2)
i, j (t)

}

]

=
n−1

∑
i=1

n

∑
j=i+1

∆ j−1, j E[M(2)
i, j ]

≤ ∑
1≤i< j≤n

8

∆2
i, j

∆ j−1, j

Adding the two bounds gives the statement of the lemma.

Before presenting the next lemma that will finish the proof ofTheorem 1, let us make
the following definition which will be useful in the proof.

Definition 3 For an expertj andy≥ 0, let iy( j) be the minimum numbered experti ≤ j
such that∆i, j is no more thany. That is

iy( j) := argmin{i : i ≤ j,∆i, j ≤ y}.

For an experti, andy≥ 0, let jy(i) be the maximum numbered expertj ≥ i such that∆i, j is
no more thany. That is

jy(i) := argmax{ j : j ≥ i,∆i, j ≤ y}.

Now we are ready to present our next lemma.

Lemma 4 Let ∆i,i+1 > 0 for i = 1,2, . . . ,n−1. Then

∑
1≤i< j≤n

∆−2
i, j ∆i,i+1 ≤ 2

n

∑
j=2

∆−1
j−1, j and ∑

1≤i< j≤n

∆−2
i, j ∆ j−1, j ≤ 2

n−1

∑
i=1

∆−1
i,i+1.
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Note that this lemma is very important from a technical pointof view in the proof of the
regret bound forFTAL, but does not have a direct bearing on the intuitive understanding of
the algorithm.

Note that Lemma 4 combined with Lemma 2 finishes the proof of Theorem 1. Instead of
proving the lemma above, we will prove a slight generalization (that will be useful in taking
care of “small∆i,i+1’s”), and the lemma above will follow as a special case by putting ε = 0.

Let us first motivate the generalization. The left hand side of the first inequality in
Lemma 4 can also be written as∑1≤i< j≤n:∆i, j >0 ∆−2

i, j ∆i,i+1, since the condition∆i, j > 0 is
vacuous (we are assuming in the statement of the lemma that∆i, j > 0 for i < j). Instead of
putting an upper bound on∑1≤i< j≤n:∆i, j >0 ∆−2

i, j ∆i,i+1, we will relax the condition∆i, j > 0

to ∆i, j > ε for someε ≥ 0 and prove an upper bound on∑1≤i< j≤n:∆i, j >ε ∆−2
i, j ∆i,i+1. Let us

present the general case.

Lemma 5 For ε ≥ 0,

∑
1≤i< j≤n:∆i, j >ε

∆−2
i, j ∆i,i+1 ≤ 2

n

∑
j= j0(1)+1

max{ε ,∆i0( j)−1,i0( j)}−1 and

∑
1≤i< j≤n:∆i, j>ε

∆−2
i, j ∆ j−1, j ≤ 2

j0(n)−1

∑
i=1

max{ε ,∆ j0(i), j0(i)+1}−1.

Recall from Definition 3 that if∆i, j > 0 for i < j, then j0(i) = i for all i andi0( j) = j for
all j, and the above lemma reduces to Lemma 4 by takingε = 0. The more complex bound,
in terms of∆i0( j)−1,i0( j) and∆ j0(i), j0(i)+1, will be needed later in the paper when proving the
more general Theorem 6 that allows for∆i, j = 0.

Proof It suffices to prove the first of the two inequalities stated inthe lemma; the second
follows from the first by replacing eachµi with 1−µi , which has the effect of replacing∆i, j

with ∆n+1− j,n+1−i .
For a fixedi ∈ [n], we write∑ j: j>i,∆i, j >ε ∆−2

i, j as follows.

∑
j: j>i,∆i, j >ε

∆−2
i, j =

n

∑
j=2

1
{

j > i,∆i, j > ε
}

∆−2
i, j (8)

=

∫ ∞

x=0

∣

∣

∣

{

j : j > i,∆i, j > ε ,∆−2
i, j ≥ x

}∣

∣

∣
dx

=
∫ ∞

x=0

∣

∣

∣

{

j : ε < ∆i, j ≤ x−1/2
}∣

∣

∣
dx (∆i, j > ε implies j > i.)

=−2
∫ 0

y=∞

∣

∣

{

j : ε < ∆i, j ≤ y
}∣

∣y−3dy (Changing the variable of
integrationx−1/2 = y.)

= 2
∫ ∞

y=0

∣

∣

{

j : ε < ∆i, j ≤ y
}∣

∣y−3dy. (9)

Now we can write the following chain of inequalities. (Note that the best (highest payoff)
expert is indexed as 1, and lowest payoff is indexedn.)

n−1

∑
i=1

∑
j∈{i+1,i+2,...,n},∆i, j >ε

∆−2
i, j ∆i,i+1
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=
n−1

∑
i=1

∆i,i+1 ∑
j: j>i,∆i, j >ε

∆−2
i, j (10)

= 2
n−1

∑
i=1

∆i,i+1

(

∫ ∞

y=0

∣

∣

{

j : ε < ∆i, j ≤ y
}∣

∣y−3dy

)

(From (9).)

= 2
∫ ∞

y=0
y−3

(

n−1

∑
i=1

∆i,i+1 ·
∣

∣

{

j : ε < ∆i, j ≤ y
}∣

∣

)

dy (Changing the order of integration
and summation.)

= 2
∫ ∞

y=0
y−3

(

n−1

∑
i=1

∆i,i+1

n

∑
j=i+1

1
{

ε < ∆i, j ≤ y
}

)

dy (Expanding|{·}| into sum
of 1{·}.)

= 2
∫ ∞

y=0
y−3

(

n

∑
j=2

j−1

∑
i=1

∆i,i+11
{

ε < ∆i, j ≤ y
}

)

dy (Changing the order of summation.)

= 2
n

∑
j=2

∫ ∞

y=0
y−3

(

j−1

∑
i=1

∆i,i+11
{

ε < ∆i, j ≤ y
}

)

dy (Changing the order of summation
and integration.)

= 2
n

∑
j=2

∫ ∞

y=ε
y−3

(

j−1

∑
i=1

∆i,i+11
{

ε < ∆i, j ≤ y
}

)

dy (For y < ε , the integrand is 0.)

= 2
n

∑
j=2

∫ ∞

y=ε
y−3





iε ( j)−1

∑
i=iy( j)

∆i,i+1



dy (Use Definition 3.)

= 2
n

∑
j=2

∫ ∞

y=ε
y−3
(

µiy( j)−µiε( j)

)

dy

Now, we need a little care in manipulating this expression. Let us consider two cases:
(i) µiε ( j) = µi0( j), which means that there is no arm with mean in(µ j ,µ j +ε ], and (ii)µiε( j)

>

µi0( j), which means that there is some arm with mean in(µ j ,µ j + ε ]. In the first case,
µiy( j)− µiε ( j) is zero whenevery < ∆i0( j)−1,i0( j), so the lower limit of the integration can
be changed to∆i0( j)−1,i0( j). In the second case, no special care needs to be taken. Note
that in both cases,µiy( j)− µiε ( j) ≤ y. Also note that forj such thatµ j = µ1, the difference
µiy( j)− µiε ( j) is always zero (both terms being equal toµ1. So, we can change the lower
limit of the outer sum to start fromj0(1)+1 (the first arm which has mean lower than the
mean of the first arm).)

≤ 2
n

∑
j= j0(1)+1

(

1
{

∆i0( j)−1,i0( j) > ε
}

∫ ∞

y=∆i0( j)−1,i0( j)

y−2dy+1
{

∆i0( j)−1,i0( j) ≤ ε
}

∫ ∞

y=ε
y−2dy

)

= 2
n

∑
j= j0(1)+1

(

1
{

∆i0( j)−1,i0( j) > ε
}(

∆i0( j)−1,i0( j)

)−1
+1
{

∆i0( j)−1,i0( j) ≤ ε
}

(ε)−1
)

= 2
n

∑
j= j0(1)+1

(

max
{

ε ,∆i0( j)−1,i0( j)

})−1

This concludes the proof of the lemma.

Remarks for small∆i,i+1 Note that the upper bound stated in Theorem 1 become very large
when∆i,i+1 is very small for somei. Indeed, when mean payoffs of all experts are equal,
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∆i,i+1 = 0 for all i and upper bound becomes trivial, while the algorithm does well (picking
any expert is as good as any other). We suggest a slight modification of the proof to take
care of such case.

Let ε > 0 be fixed (the original theorem corresponds to the caseε = 0). Recall the
definition of iε( j) and jε (i) from Definition 3. Note that the three conditions: (1)i < iε( j),
(2) j > jε(i), and (3)∆i, j > ε are equivalent. The idea in this new analysis is to “identify”
experts that have means withinε of each other. (We cannot just make equivalence classes
based on this, since the relation of “being withinε of each other” is not an equivalence
relation.)

Lemma 2 can be modified to prove that the regret of the algorithm is bounded by

2εT + ∑
1≤i< j≤n,
∆i, j >ε

8

∆2
i, j

(∆i,i+1 +∆ j−1, j ).

This can be seen by rewriting Equation (6) as

E

[

T

∑
t=1

n

∑
j=2

1
{

E
(1)
i∗t , j (t)

}
iε ( j)−1

∑
i=i∗t

∆i,i+1

]

+E

[

T

∑
t=1

n

∑
j=2

1
{

E
(1)
i∗t , j (t)

} j−1

∑
i=iε ( j)

∆i,i+1

]

and noting that the second term is at most

E

[

T

∑
t=1

n

∑
j=2

1
{

E
(1)
i∗t , j (t)

}

ε

]

= E

[

ε
T

∑
t=1

1

]

= εT,

since only one of the eventsE (1)
i∗t , j (t) (corresponding toj = xt) can occur for eacht. Equa-

tion (7) can be similarly modified by splitting the summationj = i + 1. . .xt to j = i +
1. . . jε(i) and j = jε(i)+1. . .xt .

To upper bound the regret by the sum of inverses of∆i,i+1, we can use Lemma 5. With
these modifications to the proof, we have established the following variant of Theorem 1.
Note that the result of Theorem 1 can be seen to be a special case of the theorem below by
settingε = 0.

Theorem 6 For everyε ≥ 0, theFTAL algorithm has a regret of at most

2εT +
n

∑
j= j0(1)+1

16
max{ε ,∆i0( j)−1,i0( j)}

+
j0(n)−1

∑
i=1

16
max{ε ,∆ j0(i), j0(i)+1}

.

with respect to the best ordering.

Remember that the distributionsPi(·) and, in particular,ε0 = mini{∆ j0(i), j0(i)+1} are

independent ofT. This means that forT large enough (O(ε−2
0 )), the optimalε in the theorem

above will be zero, obtaining a constant regret bound with respect toT. Note that to make
this statement it is critical to express the regret bound in terms of∆ j0(i), j0(i)+1 rather than in
terms of∆i,i+1 to handle the case where∆i,i+1 = 0 for somei, and ensure thatε0 is bounded
away from 0.
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2.1.2 Lower Bound

In this section, assuming that the meansµi are bounded away from 0 and 1, we prove that
FTAL’s regret presented in the section above is optimal (up to constant factors). This is
done by showing the following lower bound on the regret guarantee of any algorithm. Let
Bernoulli(p) denote the Bernoulli distribution with meanp. We useKL(p;q) to denote the
KL-divergence of two distributions, and for the case of Bernoulli distributions with means
µ andµ ′, we use the notationKL(µ; µ ′) instead of writing a somewhat more wordy notation
KL(Bernoulli(µ),Bernoulli(µ ′)). Please refer to (Karp & Kleinberg, 2007) and (Cover &
Thomas, 1999) for an introduction to KL-divergence.

Lemma 7 Let Pi = Bernoulli(µi) for i = 1,2, . . . ,n be the payoff distributions withµi ∈
(α ,β ) for some0 < α < β < 1 (µi ’s can be relaxed to lie in theclosedinterval [α ,β ]). Let
φ be any algorithm for the stochastic best expert model. Then,there is an input instance with
n arms endowed with some permutation of the aforementioned distributions(P1,P2, . . . ,Pn),
such that the regret ofφ up to time T is at least

Ω

(

n−1

∑
i=1

1
∆i,i+1

)

,

whenever T≥ T0, where T0 is a function of n,(µ1,µ2, . . . ,µn), α , andβ .

To prove this lemma, we first prove its special case for the case of two experts.

Lemma 8 Let Pi = Bernoulli(µi) for i = 1,2 be payoff distribution withµ1,µ2 ∈ (α ,β ),
µ1 > µ2, and0 < α < β < 1. Let φ be an online algorithm for the stochastic best expert
problem with two experts. Consider two instances I1 and I2 for the stochastic best expert
setting: In both instances, there are two experts namely L and R; in I1, (L,R) are endowed
with reward distributions(P1,P2) and in I2, they are endowed with(P2,P1). Then the regret
of algorithmφ on at least one of I1 or I2 is

Ω
(

δ−1) ,

whenever T≥T0, whereδ = µ1−µ2, T0 is a function of(µ1,µ2), α , andβ , and the constants
inside theΩ (·) may depend onα ,β .

Proof Let us define some joint distributions:p is thejoint distribution in which both experts
have payoff distributionP1, qL is the distribution in which they have payoff distributions
(P1,P2) (left is better), andqR is the distribution in which they have payoff distributions
(P2,P1) (right expert is better).

Let T0 = c
δ 2 for c = min{α(1−α),β (1−β )}

25 , andT ≥ T0. We will prove that ifφ runs forT

rounds, then for one the instancesqL or qR, it will suffer at leastΩ (δ−1) regret.
Let us define the following events:EL

t is true if φ picksL at timet, and similarlyER
t .

We denote bypt(·) the distribution induced byφ on thet-step histories, where the distri-
bution of rewards in each time period isp(·). Similarly for qt(·). We havept [EL

t ]+ pt [ER
t ] =

1. Therefore, for everyt, there existsM ∈ {L,R} such thatpt [EM
t ] ≥ 1/2. Similarly, there

existsM ∈ {L,R} such that
∣

∣

∣

∣

{

t : 1≤ t ≤ T, pt [EM
t ]≥ 1

2

}∣

∣

∣

∣

≥ T
2

.
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Without loss of generality, assume thatM = L. Now assume the algorithm faces the in-
put distributionqR, and defineq = qR. UsingKL(·; ·) to denote the KL-divergence of two
distributions, we have

KL(pt ;qt)≤ KL(pT ;qT) = T ·KL(p;q) = cδ−2 ·KL(µ1; µ2)

≤ cδ−2 · δ 2

2min{α(1−α),β (1−β )} ≤
1
50

,

by the choice ofc.
Karp and Kleinberg (2007) prove the following lemma. If there is an eventE with

p(E)≥ 1/3 andq(E) < 1/3, then

KL(p;q)≥ 1
3

ln

(

1
3q(E)

)

− 1
e
. (11)

We have that for at leastT/2 values oft, pt(EL
t )≥ 1/3 (it is actually at least 1/2). In such

time steps, we either haveqt(EL
t )≥ 1/3 or the lemma applies, yielding

1
50
≥ KL(pt ;qt)≥ 1

3
ln

(

1
qt(EL

t )

)

− 1
e
.

This givesqt(EL
t )≥ 1

10. Therefore, the regret of the algorithm in time periodt is at least

µ1−
(

9
10

µ1 +
1
10

µ2

)

≥ 1
10

δ .

SinceT = Ω (δ−2), we have that the regret is at least

1
10

δ ·Ω (δ−2) = Ω (δ−1).

This finishes the proof of the lower bound for two experts. We next prove the lower bound
for n experts.

Proof of Lemma 7: Let us group experts in pairs of 2 as(2i−1,2i) for i = 1,2, . . . ,⌊n/2⌋.
Apply the two-expert lower bound from Lemma 8 by creating a series of time steps when
At = {2i − 1,2i} for eachi. (We need a sufficiently large time horizon — namelyT ≥
∑⌊n/2⌋

i=1 c∆−2
2i−1,2i — in order to apply the lower bound to all⌊n/2⌋ two-expert instances.)

The total regret suffered by any algorithm is the sum of regret suffered in the independent
⌊n/2⌋ instances defined above. Using the lower bound from Lemma 8, we get that the regret
suffered by any algorithm is at least

⌊n/2⌋
∑
i=1

Ω
(

1
∆2i−1,2i

)

.

Similarly, if we group the experts in pairs according to(2i,2i + 1) for i = 1,2, . . . ,⌊n/2⌋,
then we get a lower bound of

⌊n/2⌋
∑
i=1

Ω
(

1
∆2i,2i+1

)

.
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Since both of these are lower bounds, so is their average, which is

1
2

n−1

∑
i=1

Ω
(

1
∆i,i+1

)

= Ω

(

n−1

∑
i=1

∆−1
i,i+1

)

.

This proves the lemma. ⊓⊔

2.2 Multi-Armed Bandit Setting

We now turn our attention to the multi-armed bandit setting against a stochastic adversary.
We first present a variant of theUCB1 algorithm (Auer et al., 2002a), and then present a
matching lower bound based on an idea from Lai and Robbins (1985).

2.2.1 Upper Bound (Algorithm:AUER)

Here the optimal algorithm is again a natural extension of the UCB1 algorithm (Auer et al.,
2002a) to the sleeping-bandits case. In a nutshell, the algorithm keeps track of the running
average of payoffs received from each arm, and also a confidence interval of width (radius)

ρ j,t =
√

8lnt
n j,t

around armj, wheret is the current time interval andn j,t is the number of times

j ’s payoff has been observed (number of times armj has been played). At timet, if an arm
becomes available for the first time then the algorithm chooses it. Otherwise the algorithm
optimistically picks the arm with highest “upper estimatedreward” (or “upper confidence
bound” in UCB1 terminology) among the available arms. That is, it picks thearm j ∈ At

with maximum µ̂ j,t + ρ j,t where µ̂ j,t is the mean of the observed rewards of armj up to

time t, andρ j,t =
√

8lnt
n j,t

is the width of the confidence interval around armj at timet. The

algorithm is shown in Figure 2. The algorithm is calledAwakeUpperEstimatedReward
(AUER).

Initialize zi = 0 andni = 0 for all i ∈ [n].1
for t = 1 to T do2

if ∃ j ∈ At s.t. nj = 0 then3
Play armx(t) = j4

else5

Play armx(t) = argmaxi∈At

(

zi
ni

+
√

8 logt
ni

)

6

end7
Observe payoffrx(t)(t) for armx(t)8

zx(t)← zx(t) + rx(t)(t)9

nx(t)← nx(t) +110

end11

Algorithm 2 : TheAUER algorithm for the sleeping bandit problem with a stochastic
adversary.

We first need to state a claim about the confidence intervals that we are using.
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Lemma 9 With the definition of ni,t , µi , µ̂i , and ρi,t =
√

8lnt
ni,t

the following holds for all

1≤ i ≤ n and1≤ t ≤ T:

P

[

µi ∈ [µ̂i,t −ρi,t , µ̂i,t +ρi,t ]
]

= P

[

µ̂i,t ∈ [µi −ρi,t ,µi +ρi,t ]
]

≥ 1− 1
t4 .

Proof The equality follows since the two events are the same. The proof of inequality is
an application of Chernoff-Hoeffding bounds, and follows from (Auer et al., 2002a, pp.
242–243).

Theorem 10 For problem instances with∆i,i+1 > 0 for i = 1,2, . . . ,n−1, the regret of the
AUER algorithm is at most

(66lnT +O(1)) ·
n−1

∑
i=1

1
∆i,i+1

.

up to time T.

The theorem follows immediately from the following lemma and Lemma 4. Note that we
are only considering problem instances in which different arms have different means. This
restriction will be removed at the end of this section, wherewe present a general bound, and
the above theorem will follows as a special case of the general result.

Lemma 11 For problem instances with∆i,i+1 > 0 for i = 1,2, . . . ,n−1, theAUER algorithm
has a regret of at most

(33lnT +O(1)) ·
n

∑
j=2

j−1

∑
i=1

(

1

∆2
i, j

)

∆i,i+1,

up to time T.

Proof We bound the regret of the algorithm arm by arm. Let us consider an arm 2≤ j ≤ n.
For i < j, let us count the numberNi, j of times j was played when some arm in 1,2, . . . , i
was awake. (In these iterations, the regret accumulated is at least∆i, j and at most∆1, j .) We
claim thatE[Ni, j ]≤Qi, j , whereQi, j := 33lnT

∆2
i, j

.

We want to claim that after playingj for Qi, j number of times, we are unlikely to make
the mistake of choosingj instead of something from the set{1,2, . . . , i}; that is, if the set of
awake arms at timet includes some arm in[i] as well as armj, then with probability at least
1− 2

t4
, some awake arm in[i] will be chosen rather than armj.

Let us bound the expected number of timesj is chosen whenAt ∩ [i] 6= /0 and j has
already been playedQi, j number of times.

∑
Qi, j <s≤t≤T

P

[

(xt = j)∧ ( j is playeds-th time)∧ (At ∩ [i] 6= /0)
]

≤ ∑
Qi, j <s≤t≤T

P

[

(xt = j)∧ (n j,t = s)∧
(

∀i
k=1

(

µ̂ j,t +ρ j,t ≥ µ̂k,t +ρk,t
))

]

= ∑
Qi, j <s≤t≤T

P

[

(xt = j)∧ (n j,t = s)∧
(

∀i
k=1

(

µ̂ j,t +

√

8lnt
s
≥ µ̂k,t +ρk,t

))]

≤ ∑
Qi, j <s≤t≤T

P

[

∀i
k=1

(

µ̂ j,t +

√

8lnt
s
≥ µ̂k,t +ρk,t

)]

. (12)
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Let us define the event inside the probability expression asE1 and defineE2 to be the event
that µ̂k,t ∈ [µk−ρk,t ,µk +ρk,t ] for all k∈ { j}∪{1,2, . . . , i}. (AlthoughE1 andE2 depend on
s andt, we suppress this dependence for notational convenience.)The probability of event
E2 is at least 1− (i +1)t−4 (from Lemma 9).

We will bound use the probability ofE1 by conditioning it on the eventE2. We can write
P[E1] = P[E1|E2]P[E2]+P[E1|Ec

2]P[Ec
2]≤ P[E1|E2]+P[Ec

2]. To boundP[E1|E2], notice that

the confidenceρ j,t of arm j is at most
√

8lnT
33lnT ·∆2

i, j <
∆i, j
2 .

If eventE2 happens,̂µ j,t +ρ j,t ≤ (µ j +ρ j,t )+ρ j,t < µ j +∆i, j = µi . Also, µ̂k,t +ρk,t ≥ µk

for all k = 1,2, . . . , i. Therefore, the sum in (12) can be upper-bounded by following.

∑
Qi, j <s≤t≤T

(

P

[

∀i
k=1

(

µ̂ j,t +

√

8lnt
s
≥ µ̂k,t +ρk,t

)
∣

∣

∣

∣

∣

E2

]

+P[Ec
2]

)

≤ ∑
Qi, j <s≤t≤T

(

P
[

∀i
k=1(µ̂ j,t +ρ j,t ≥ µk)

])

+ ∑
Qi, j <s≤t≤T

i +1
t4

≤ ∑
Qi, j <s≤t≤T

P [µ̂ j,t +ρ j,t ≥ µi ]+ ∑
Qi, j <s≤t≤T

i +1
t4 (Sinceµ1 ≥ µ2 ≥ ·· · ≥ µi .)

≤ O(nT−2) (The first term is zero, since
µ̂ j,t +ρ j,t < µi , see above.)

= O(1).

Therefore, afterj has been playedQi, j number of times, the expected number of additional
times thatj is played whenAt ∩ [i] 6= /0 is bounded above by a constant. This implies

E[Ni, j ]≤Qi, j +O(1)≤ 33ln(T)

∆2
i, j

+O(1).

Now, it is easy to bound the total regret of the algorithm, which is

E

[

n

∑
j=2

j−1

∑
i=1

(Ni, j −Ni−1, j)∆i, j

]

=
n

∑
j=2

j−1

∑
i=1

Ni, j (∆i, j −∆i+1, j ) , (13)

which follows by regrouping of terms and the convention thatN0, j = 0 and∆ j, j = 0 for all
j. Taking the expectation of this gives the regret bound of

(33lnT +O(1)) ·
n

∑
j=2

j−1

∑
i=1

(

1

∆2
i, j

)

(∆i, j −∆i+1, j ).

This gives the statement of the lemma.

Remarks for small∆i,i+1 As noted in the case of the expert setting, the upper bound above
becomes very weak if some∆i,i+1 are small. In such a case, the proof can be modified by
changing equation (13) as follows.

n

∑
j=2

j−1

∑
i=1

(Ni, j −Ni−1, j )∆i, j

=
n

∑
j=2

iε ( j)

∑
i=1

(Ni, j −Ni−1, j)∆i, j +
n

∑
j=2

j−1

∑
i=iε ( j)+1

(Ni, j −Ni−1, j)∆i, j
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≤
n

∑
j=2

iε ( j)−1

∑
i=1

Ni, j∆i,i+1 +
n

∑
j=2

Niε ( j), j∆iε ( j), j +
n

∑
j=2

j−1

∑
i=iε ( j)+1

(Ni, j −Ni−1, j)ε

≤
n

∑
j=2

iε ( j)−1

∑
i=1

Ni, j∆i,i+1 + ε
n

∑
j=2

Niε ( j), j + ε
n

∑
j=2

(Nj−1, j −Niε ( j), j)

≤ ∑
1≤i< j≤n,∆i, j >ε

Ni, j∆i,i+1 + εT,

where the last step follows from∑n
j=2 Nj−1, j ≤ T.

Taking the expectation, and using the Lemma 5, we get the following regret bound for
AUER algorithm.

Theorem 12 For anyε ≥ 0, the regret of theAUER algorithm is at most

εT +
n

∑
j= j0(1)+1

33lnT +O(1)

max{ε ,∆i0( j)−1,i0( j)}
+

j0(n)−1

∑
i=1

33lnT +O(1)

max{ε ,∆ j0(i), j0(i)+1}
,

up to time T.

2.2.2 Lower bound

In this section, we prove that theAUER algorithm presented is information theoretically
optimal up to constant factors when the numbersµi — the mean payoffs of arms — are
bounded away from 0 and 1. We do this by presenting a lower bound of

Ω

(

lnT ·
n−1

∑
i=1

∆−1
i,i+1

)

for this problem. This is done by closely following the lowerbound of Lai and Robbins
(1985) for two-armed bandit problems. The difference is that Lai and Robbins prove their
lower bound only in the case whenT→∞, but we want to get bounds that hold for finiteT.
Our main result is stated in the following lemma.

Lemma 13 Let Pi = Bernoulli(µi) for i = 1,2, . . . ,n be payoff distributions withµi ∈ (α ,β )
for some0< α < β < 1. Letφ be an algorithm for picking among n arms such that for all t,
the expected number of timesφ plays a suboptimal bandit up to time t is bounded above by
c1t0.1 +c2 (c1 and c2 possibly depend onµi ). Then, there is an input instance with n arms
endowed with some permutation of the aforementioned distributions(Pi)

n
i=1, such that the

regret ofφ is at least

Ω

(

n−1

∑
i=1

(logT)(µi−µi+1)

KL(µi+1; µi)

)

,

for T ≥ T0, where T0 is a function of n,µi , c1, c2, α , β .

We note that the exponent 0.1 in the lemma is quite arbitrary. Indeed, any nonzero ex-
ponent would work for the purpose of the proof.

Note that the above lower bound without the(logT) factor follows from the stochastic
best expert lower bound in Lemma 7.
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Using the fact that forµi ∈ (α ,β ), KL(µ j ; µi) = Oα ,β (∆2
i, j), the lower bound can also

be stated as

Ωα ,β

(

n−1

∑
i=1

(logT)

∆i,i+1

)

,

which matches (up the constant factors) the upper bound in Theorem 10. Note that the
notationsOα ,β (·) andΩα ,β (·) hide dependence onα andβ .

We first prove the result for two arms. For this, in the following, we extend the Lai and
Robbins result so that it holds (with somewhat worse constants) for finiteT, rather than only
in the limit T→ ∞.

Lemma 14 Let Pi = Bernoulli(µi) for i = 1,2 with µ2 < µ1, µi ∈ (α ,β ) for i = 1,2 and
0 < α < β < 1. Let φ be any algorithm for choosing among two arms which never picks
the worse arm (for any values ofµ1 andµ2 in (α ,β )) more than c1t0.1 +c2 times up to time
t (c1 and c2 possibly depend onµ1 and µ2). Then there exists an instance with two arms
endowed with two distributions above (in some order) such that the regret of the algorithm
φ when presented with this instance is at least

1
6

(

(logT)(µ1−µ2)

KL(µ2; µ1)

)

,

for all T ≥ T0, and the value of T0 can be explicitly computed as a function ofµ1,µ2,c1,c2,
α , β .

Proof From the assumption thatµ1 andµ2 are bounded away from 0 and 1, there exists a
Bernoulli distribution with meanλ > µ1 with

|KL(µ2;λ )−KL(µ2; µ1)| ≤
1
10
·KL(µ2; µ1),

because of the continuity of KL divergence in its second argument. Indeed, using the con-
vexity of KL(µ2; ·) (for fixed µ2), and the fact that the slope ofKL(µ2; ·) is bounded by

β−µ2
β (1−β ) , λ can be chosen to be min

{

µ1 + KL(µ2;µ1)
10

β (1−β )
(β−µ2) ,

β−µ1
2

}

. This claim provides us

with a Bernoulli distribution with meanλ (which is an explicit function ofµi andβ ) such
that

KL(µ2;λ )≤ 11
10
·KL(µ2; µ1). (14)

From now on, until the end of the proof, we work with the following two distributions on
T-step histories:p is the distribution induced by the algorithmφ playing against Bernoulli
arms with means(µ1,µ2), andq is the distribution induced byφ playing against Bernoulli
arms with means(µ1,λ ). From the assumption of the lemma, we have

Eq[T−n2,T ]≤ c1T0.1 +c2.

Note thatc1 andc2 here are functions ofµ1 andλ (which in turn is a function ofµi , α , β ).
By an application of Markov’s inequality, we get that

Pq

[

n2,T <
9
10

(logT)/KL(µ2;λ )

]

≤ Eq[T−n2,T ]

T− 9
10(logT)/KL(µ2;λ )
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≤ c1T0.1 +c2

T/2

(

for T > e5/(9KL(µ2;λ ))
)

≤ 4c1T−0.9. (for T > (c2/c1)
10)

(15)

Let E denote the event thatn2,T < 9
10(logT)/KL(µ2;λ ). If Pp(E ) < 1/3, then

Ep[n2,T ]≥ Pp(E ) · 9
10

(logT)/KL(µ2,λ )

≥ 2
3
· 9
10
· logT
KL(µ2,λ )

≥ 2
3
· 9
11
· logT
KL(µ2; µ1)

,

which implies the stated lower bound.
Henceforth, we will assumePp(E )≥ 1/3. We havePq(E ) < 1/3 using (15). Now ap-

plying the lemma from (Karp & Kleinberg, 2007) stated in (11), we have

KL(p;q)≥ 1
3

ln

(

1
3·4c1T−0.9

)

− 1
e

=
1
3
(0.9) lnT−

(

1
e

+
1
3

ln(12c1)

)

= (0.3) lnT−
(

1
3

ln(e3/ec1)

)

. (16)

The chain rule for KL divergence (Cover & Thomas, 1999, Theorem 2.5.3) implies

KL(p;q) = Ep[n2,T ] ·KL(µ2;λ ) (17)

Combining (16) with (17), we get

Ep[n2,T ]≥ (0.3) lnT− 1
3 ln(e3/ec1)

KL(µ2;λ )

≥ 0.3
1.1

lnT
KL(µ2; µ1)

− 1
3

ln(e3/ec1)

KL(µ2; µ1)

=
3
11

ln(T)

KL(µ2; µ1)
− 1

3
ln(e3/ec1)

KL(µ2; µ1)

≥ 3
11

ln(T)

KL(µ2; µ1)
− 1

10
ln(T)

KL(µ2; µ1)
(for T > (e3/ec1)

10/3)

≥ 1
6

ln(T)

KL(µ2; µ1)
.

This gives the required regret bound. The explicit value ofT above which the bound holds
is

T0 := max

{

e5/(9KL(µ2;λ )),

(

c2

c1

)10

, (e3/ec1)
10/3

}

,

which can be explicitly written as a function ofµ1, µ2, c1, c2, α , β .
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We now extend the result from 2 ton bandits.

Proof of Lemma 13: A naive way to extend the lower bound is to divide the time line
betweenn/2 blocks of length 2T/n each and usen/2 separate two-armed bandit lower
bounds as done in the proof of Lemma 7.

We can pair the arms in pairs of(2i−1,2i) for i = 1,2, . . . ,⌊n/2⌋. We present the algo-
rithm with two arms 2i−1 and 2i in the i-th block of time. The lower bound then is

Ω

(

log

(

T
n

) ⌊n/2⌋
∑
i=1

(

µ2i−1−µ2i

KL(µ2i ; µ2i−1)

)

)

.

We get a similar lower bound by presenting the algorithm with(2i,2i +1):

Ω

(

log

(

T
n

) ⌊(n−1)/2⌋
∑
i=1

(

µ2i−µ2i+1

KL(µ2i+1; µ2i)

)

)

.

Taking the average of the two lower bounds andT ≥ n2 gives the required lower bound of

Ω

(

n−1

∑
i=1

(logT)(µi−µi+1)

KL(µi+1; µi)

)

,

finishing the proof of the lemma. ⊓⊔

3 Adversarial Model of Rewards

We now turn our attention to the case where no distributionalassumptions are made on the
generation of rewards. We consider in turn the best expert setting and the multi-armed bandit
setting. For each setting, we first prove information theoretic lower bounds on the regret of
any online learning algorithm, and then present online algorithms whose regret is within a
constant factor of the lower bound for the expert setting andwithin a sub-logarithmic factor
of the lower bound for the bandit setting. Unlike in the stochastic rewards setting, however,
these algorithms are not computationally efficient. It is anopen problem if there exists an
efficient algorithm whose regret grows asO(T1−ε nc) for some positive constantsε ,c.

3.1 Best Expert Setting

In this section, we consider the adversarial sleeping best expert setting. Recall that in the
sleeping best expert setting, the algorithm chooses an expert to play in each time round from
the set of available experts, and at the end of the round, getsto observe the rewards ofall
available experts for that round, not just for the one it chose. There is no assumption on how
the rewards of these experts are generated in each round; indeed an adversary chooses the
reward of each expert in each time round, and can observe the choices made by the algorithm
prior to that round in choosing the rewards for a particular round. Additionally, the adversary
also chooses which subset of the experts will be awake (available) in each time round.

We first present a lower bound on the achievable regret of any algorithm for the adver-
sarial sleeping best expert problem.
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Theorem 15 For every online algorithmALG and every time horizon T , there is an adver-
sary such that the algorithm’s regret with respect to the best ordering, at time T, is

Ω (
√

Tnlog(n)).

Proof We construct a randomized oblivious adversary (i.e. a distribution on input sequences
of length T) such that the regret of any algorithmALG is at leastΩ (

√

Tnlog(n)). The
adversary partitions the timeline{1,2, . . . ,T} into a series oftwo-expert games, i.e. intervals
of consecutive rounds during which only two experts are awake and all the rest are asleep.
In total there will beQ(n) = Θ(nlogn) two-expert games, whereQ(n) is a function to be
specified later in (19). Fori = 1,2, . . . ,Q(n), the set of awake experts throughout thei-th two-
experts game is a pairA(i) = {xi ,yi}, determined by the adversary based on the (random)
outcomes of previous two-experts games. The precise rule for determining the elements of
A(i) will be explained later in the proof.

Each two-experts game runs forT0 = T/Q(n) rounds, and the payoff functions for the
rounds are independent, random bijections fromA(i) to {0,1}. Letting g(i)(xi), g(i)(yi) de-
note the total payoffs ofxi andyi , respectively, during the two-experts game, it follows from
Khintchine’s inequality (Khintchine, 1923) that

E

(∣

∣

∣
g(i)(xi)−g(i)(yi)

∣

∣

∣

)

= Ω
(

√

T0

)

. (18)

The expected payoff for any algorithm can be at mostT0
2 , so for each two-experts game the

regret of any algorithm is at leastΩ (
√

T0). For each two-experts game we define thewinner
Wi to be the element of{xi ,yi}with the higher payoff in the two-experts game; we will adopt
the convention thatWi = xi in case of a tie. Theloser Li is the element of{xi ,yi} which is
not the winner.

The adversary recursively constructs a sequence ofQ(n) two-experts games and an or-
dering of the experts such that the winner of every two-experts game precedes the loser in
this ordering. (We call such an orderingconsistentwith the sequence of games.) In describ-
ing the construction, we assume for convenience thatn is a power of 2. Ifn = 2 then we set
Q(2) = 1 and we have a single two-experts game and an ordering in which the winner pre-
cedes the loser. Ifn > 2 then we recursively construct a sequence of games and an ordering
consistent with those games, as follows:

1. We constructQ(n/2) games among the experts in the set{1,2, . . . ,n/2} and an ordering
≺1 consistent with those games.

2. We constructQ(n/2) games among the experts in the set{(n/2) + 1, . . . ,n} and an
ordering≺2 consistent with those games.

3. Letk = 2Q(n/2). For i = 1,2, . . . ,n/2, we definexk+i andyk+i to be thei-th elements in
the orderings≺1,≺2, respectively. The(k+ i)-th two-experts game uses the setA(k+i) =
{xk+i ,yk+i}.

4. The ordering of the experts puts the winner of the game betweenxk+i andyk+i before the
loser, for everyi = 1,2, . . . ,n/2, and it puts both elements ofA(k+i) before both elements
of A(k+i+1).

By construction, it is clear that the ordering of experts is consistent with the games, and that
the number of games satisfies the recurrence

Q(n) = 2Q(n/2)+n/2, (19)

whose solution isQ(n) = Θ(nlogn).
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The best ordering of experts achieves a payoff at least as high as that achieved by the
constructed ordering which is consistent with the games. By(18), the expected payoff of
that ordering isT/2+Q(n) ·Ω (

√
T0). The expected payoff ofALG in each roundt is 1/2,

because the outcome of that round is independent of the outcomes of all prior rounds. Hence
the expected payoff ofALG is only T/2, and its regret is

Q(n) ·Ω (
√

T0) = Ω (nlogn
√

T/(nlogn)) = Ω (
√

Tnlogn).

This proves the theorem.

It is interesting to note that the adversary that achieves this lower bound is not adaptive
in either choosing the payoffs or choosing the awake expertsat each time step, i.e. it makes
these choices without considering the algorithm’s past decisions. It only needs to be able to
carefully coordinate which experts are awake based on the payoffs at previous time steps.

Even more interesting is the fact that this lower bound is tight, so an adaptive adversary
is not more powerful than an oblivious one. There is a learning algorithm that achieves a
regret ofO(

√

Tnlog(n)). We turn our attention to this algorithm now.
To achieve this regret we transform the sleeping experts problem to a problem with

n! experts that are always awake, and we choose among thesen! experts using theHedge

algorithm (Freund & Schapire, 1999). In the transformed problem, we have one expert for
eachσ -policy (i.e. ordering of the originaln experts). At each round, each of then! experts
makes a prediction according to its correspondingσ -policy, (i.e. the same prediction as the
highest ranked awake expert in the corresponding ordering), and receives the payoff of that
policy (i.e. the payoff of the highest ranked awake expert inthe corresponding ordering).

Theorem 16 An algorithm that makes predictions using theHedge algorithm on the trans-
formed problem achievesO(

√

Tnlog(n)) regret with respect to the best ordering.

Proof Every expert in the transformed problem receives the payoffof its corresponding
ordering in the original problem. SinceHedge achieves regretO(

√

T log(n!)) with respect
to the best expert in the transformed problem, the same regret is achieved by the algorithm
in the original problem. The theorem follows by applying thebound log(n!) = O(nlogn),
which is a consequence of Stirling’s formula.

In a naive implementation the algorithm described above is obviously not computation-
ally efficient since in each round we have to sample amongn! experts and updaten! weights.
A natural question is whether this algorithm can be implemented in polynomial time by de-
vising an efficient sampling scheme and a clever weight update procedure. The following
theorem, unfortunately, shatters any hope that this might be possible.

Theorem 17 UnlessRP= NP, any learning algorithm for the adversarial sleeping experts
problem that:

1. generates its output by sampling overσ -policies, independently of the set of awake
experts

2. has regret bounded by T1−ε · p(n) for someε > 0 and some polynomial function p(·)

cannot be implemented in polynomial time.
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Proof We prove this theorem via a reduction from the minimum feedback arc set problem
(Garey & Johnson, 1979). The notion of reduction here is not the usual Karp-reduction, but
we will show that if there is an algorithm with specified conditions, then we can find the
optimum for any feedback arc set instance with probability at least 1−δ for any constant
δ > 0.

Let ALG be any algorithm that respects the conditions in the theorem. We are given a
directed graphG = (V,A), in which we are to find the minimum feedback arc set. Every
permutation of the vertices defines a feedback arc set, but this mapping is not one to one.
(There can be many permutations for one feedback arc set.) For a permutationσ , the cor-
responding feedback arc set is the set of arcs going from higher numbered vertices to lower
numbered vertices, i.e.,{a= (u,v)∈A : σ (u) > σ (v)}. The cardinality of this set is denoted
by FAS(σ ). For a feedback arc setA′ ⊆ A, a corresponding permutation can be found by
choosing one of the topological orderings of the graph(G,A\A′). It is easy to see that the
minimum feedback arc set is equal to minσ FAS(σ ). We will use the learning algorithmALG

to find, with high probability, an orderingσ minimizing FAS(σ ).
We instantiate an adversarial sleeping experts problem with |V| experts, one for each

vertex in the graph. In each round, the adversary selects an arc (u,v) in A uniformly at
random and makes the two experts corresponding to the head(v) and the tail(u) of the
selected arc awake and all the other experts asleep. It then associates a payoff of 1 to the
expert corresponding to the tail of the arc and a payoff of 0 tothe expert corresponding to the
head of the arc. We play forT := 2(⌈ 1

δ ⌉p(n)m)1/ε rounds and in each round we record the
σ -policy selected byALG and also the feedback arc set value of the permutationσ . At the
end of theT rounds we choose the best permutation among theT rounds — the one with the
smallestFAS(σ ) value — and output the corresponding feedback arc set. See Algorithm 3.

Let σ = (1,2, . . . , |V |) (current best permutation) andx = FAS(σ) (value of the best feedback arc set1
so far).
for t = 1 to T = 2(⌈ 1

δ ⌉p(n)m)1/ε do2
Choose(u,v) ∈ A at random fromm arcs inA. Let {u,v} be the set of awake experts. Set the3
payoff of u to 1 and the payoff ofv to 0.
Record the permutationσt that the algorithmALG outputs.4
if x > FAS(σt) then5

σ ← σt6
x← FAS(σt)7

end8

end9
Output{a = (u,v) ∈ A : σ(u) > σ(v)} as the feedback arc set.10

Algorithm 3 : Algorithm to solve Feedback Arc Set Problem from low regretadver-
sarial expert algorithm.

LetFAS∗ be the optimum value of the feedback arc set. Letσ be the permutation selected
by Algorithm 3. We claim thatFAS(σ ) = FAS∗ with probability at least 1− δ . Since the
number of rounds is polynomial inn andm (ε andδ are constants), this will solve feedback
arc set in randomized polynomial time.

Since the expected regret of the algorithm is at mostT1−ε p(n), it follows from Markov’s
inequality that with probability at least 1−δ , the regret is at most1δ T1−ε p(n). We will prove
that in this event, our algorithm finds aσ with FAS(σ ) = FAS∗.

We prove this claim by contradiction. If not, then for allt = 1,2, . . . ,T, FAS(σt)≥ FAS∗+

1. The expected reward of choosing a permutationτ is 1− FAS(τ)
m . Therefore the expected
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regret in each round is at least
(

1− FAS∗
m

)

−
(

1− FAS(σt)

m

)

≥ 1
m

.

Hence, the total regret of the algorithm is at leastT · 1
m. We also know that the regret is at

most 1
δ T1−ε p(n). This gives the following relation:

T
m
≤ 1

δ
T1−ε p(n),

which simplifies toT ≤ ( 1
δ p(n)m)1/ε , a contradiction since we have takenT to be twice

as much. This proves that if we run our algorithm forT := 2(⌈ 1
δ ⌉p(n)m)1/ε , then with

probability at least 1− δ , we recover the optimum feedback arc set for the graph. This
proves the theorem.

Note that this does not mean that there does not exist an efficient, low regret algorithm
for the adversarial sleeping experts problem. One might be able to design an efficient, low
regret algorithm that either does not sample overσ -policies, or makes the sampling depen-
dent on the set of awake experts. For instance, there exists asimple algorithm that achieves
low regret against the particular adversary used in the proof above: run a separate instance of
theHedge algorithm for every pair of experts and, in each round, use the instance ofHedge

corresponding to the two experts that are awake. Since the adversary will only present the
algorithm with two awake experts at a time, this algorithm can always make a prediction,
and its regret will be bounded byO(

√
T ·n2).

3.2 Multi-Armed Bandit Setting

Finally, we consider the adversarial sleeping multi-armedbandit setting. Recall that in the
sleeping multi-armed bandit setting, the algorithm chooses an arm to play in each round
from the set of available arms, and at the end of the round, gets to observe the rewards of
the chosenarm (unlike best expert setting, where the algorithm observes the reward of all
potential choices). There is no assumption on how the rewards of these arms are generated
in each round. Additionally, an adversary also chooses which subset of arms will be awake
(available to be chosen by the algorithm) in each round.

We first present a lower bound on the achievable regret of any algorithm for the adver-
sarial sleeping multi-armed bandit problem.

Theorem 18 For every online algorithmALG and every time horizon T , there is an adver-
sary such that the algorithm’s regret with respect to the best ordering, at time T, isΩ (n

√
T).

Proof To prove the lower bound we will rely on the lower bound proof for the standard
multi-armed bandit when all the bandits are awake (Auer et al., 2002b). In the standard “all-
awake” bandit setting with a time horizon ofT0, any algorithm will have at leastΩ (

√
T0n)

regret with respect to the best bandit. To ensure this regret, the input sequence is generated by
samplingT0 times independently from a distribution in which every bandit but one receives
a payoff of 1 with probability1

2 and 0 otherwise. The remaining bandit, which is chosen at
random, incurs a payoff of 1 with probability12 + ε for an appropriate choice ofε .

To obtain the lower bound for the sleeping bandits setting weset up a sequence ofn
multi-armed bandit games as described above. Each game willrun for T0 = T

n rounds. The
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bandit that received the highest payoff during the game willbecome asleep and unavailable
in the rest of the games.

In gamei, any algorithm will have a regret of at leastΩ
(
√

T
n (n− i)

)

with respect to

the best bandit in that game. Consequently, the regret of anylearning algorithm with respect
to the best ordering is bounded below by a positive constant times the following expression:

n−1

∑
i=1

√

T
n

(n− i) =

√

T
n

n−1

∑
j=1

j1/2 ≥
√

T
n

∫ n−1

x=0
x1/2dx=

2
3

√

T
n
· (n−1)3/2 = Ω

(

n
√

T
)

.

The theorem follows.

Let us now turn our attention to getting an algorithm for the adversarial sleeping multi-
armed bandit problem. To get an upper bound on regret, we willuse theExp4 algorithm
(Auer et al., 2002b). SinceExp4 only works against oblivious adversaries, in what follows
we will also assume an oblivious adversary (i.e. the rewardsfor each arm at each round do
not depend on the past choices of the algorithm).

Exp4 chooses an arm by combining the advice of a set of “experts”. At each round, each
expert provides advice in the form of a probability distribution over arms. In particular the
advice can be a point distribution concentrated on a single action. (It is required that at least
one of the experts is theuniform expertwhose advice is always the uniform distribution over
arms.)

To useExp4 for the sleeping experts setting, we concoctn! + 1 “experts”, one corre-
sponding to the “uniform” expert which chooses each arm withequal probability, and one
each forn! orderings. The expert corresponding to an orderingσ always “advises” to play
the armσ (At) (first available arm in its ordering), i.e., in each round, the advice of expertσ
is a point distribution concentrated on the highest ranked arm in the corresponding ordering
σ .

This introduces a slight problem. Since the uniform expert may advise us to pick arms
which are not awake, we assume for convenience that the algorithms isnot restricted to
choose an action fromAt (awake set), but is allowed to choose any action at all, with the
proviso that the payoff of an action in the complement ofAt is defined to be 0. Note that
any algorithm for this modified problem can easily be transformed into an algorithm for the
original problem: every time the algorithm chooses an action in the complement ofAt we
instead play an arbitrary action inAt (and don’t use the feedback obtained about its payoff).
Such a transformation can only increase the algorithm’s payoff, i.e. decrease the regret.
Hence, to prove the regret bound asserted in Theorem 19 below, it suffices to prove the same
regret bound for the case when algorithm is allowed to choosean arm in complement ofAt

with zero payoff.

Theorem 19 TheExp4 algorithm as described above achieves a regret ofO(n
√

T log(n))
with respect to the best ordering, against an oblivious adversary.

Proof We haven arms and 1+n! experts, so the regret ofExp4 with respect to the payoff of
the best expert isO(

√

Tnlog(n! +1)) (Auer et al., 2002b). Using the estimate log(n! +1) =

O(nlogn), this regret bound can be rewritten asO(n
√

T logn). Since the payoff of each
expert is exactly the payoff of its corresponding ordering,we obtain the statement of the
theorem.
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The upper bound and lower bound differ by a factor ofO(
√

log(n)), the gap result-
ing from adapting the Exp4 algorithm to our setting. In the classical multi-armed bandit
setting, Audibert and Bubeck (2009) closed a similar gap (O(

√
Tnlogn) upper bound ver-

susΩ (
√

Tn) lower bound) by improving the Exp3 algorithm. It is not clearhow the poli-
cies from (Audibert & Bubeck, 2009) can be adapted for Exp4 algorithm, so closing the
O(
√

logn) gap in the sleeping multi-armed bandit problem setting remains an important
open problem.

4 Conclusions

We have analyzed algorithms for full-information and partial-information prediction prob-
lems in the “sleeping experts” setting, using a novel benchmark which compares the algo-
rithm’s payoff against the best payoff obtainable by selecting available actions using a fixed
total ordering of the actions. We have presented algorithmswhose regret is information-
theoretically optimal in both the stochastic and adversarial cases. In the stochastic case, our
algorithms are simple and computationally efficient. In theadversarial case, the most impor-
tant open question is whether there is a computationally efficient algorithm which matches
(or nearly matches) the regret bounds achieved by the exponential-time algorithms presented
here.
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