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Abstract.

We present an empirical comparison of the AUC perfor-
mance of seven supervised learning methods: SVMs, neural
nets, decision trees, k-nearest neighbor, bagged trees, boosted
trees, and boosted stumps. Overall, boosted trees have the
best average AUC performance, followed by bagged trees, neu-
ral nets and SVMs. We then present an ensemble selection
method that yields even better AUC. Ensembles are built
with forward stepwise selection, the model that maximizes
ensemble AUC performance being added at each step. The
proposed method builds ensembles that outperform the best
individual model on all the seven test problems.

1 Introduction

This paper presents the results of an empirical comparison
of the AUC performance of seven different supervised learn-
ing algorithms. The algorithms are SVMs, neural nets, de-
cision trees, memory-based learning, bagged trees, boosted
trees, and boosted stumps. For each algorithm we test many
different variants of the algorithm. For example, we compare
ten different styles of decision trees, neural nets of many sizes,
SVMs using many different kernels and many different values
for C (the margin parameter) and gamma (the RBF param-
eter), etc. A total of 2000 models are tested on each prob-
lem. See Appendix 1 for details of how these 2000 models are
trained.

We compare the AUC performance of the algorithms on 7
binary classification problems. ADULT, COVER_TYPE and
LETTER are from UCI Machine Learning Repository [2].
ADULT is the only problem that has nominal attributes. For
ANNs, SVMs and KNNs we transform nominal attributes
to boolean. Each DT, BAG-DT, BST-DT and BST-STMP
model is trained twice, once with the transformed attributes
and once with the original attributes. COVER_TYPE has
been converted to a binary problem by treating the largest
class as the positive and the rest as negative. We converted
LETTER to boolean in two ways. LETTER.p1 treats the let-
ter 7O” as positive and the remaining 25 letters as negative,
yielding a very unbalanced binary problem. LETTER.p2 uses
letters A-M as positives and the rest as negatives, yielding a
well balanced problem. HYPER_SPECT is the IndianPine92
data set [9] where the difficult class Soybean-mintill is the
positive class. SLAC is a problem from the Stanford Linear
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Accelerator and MEDIS is a medical data set. The character-
istics of these data sets are summarized in Table 1.

Table 1. Description of problems
PROBLEM #ATTR  TRAIN SIZE TEST SIZE
ADULT 14/104 4000 35222
COVER_TYPE 54 4000 25000
LETTER.P1 16 4000 14000
LETTER.P2 16 4000 14000
MEDIS 63 4000 8199
SLAC 59 4000 25000
HYPER_SPECT 200 4000 4366

2 AUC of Learning Algorithms

In this section we compare the best AUC performance that
can be achieved with each learning algorithm by varying each
algorithm’s control parameters. For each algorithm we use
the control parameter settings described in the Appendix. We
train all models on identical train sets containing 4000 points.

Parameter optimization is more difficult with some algo-
rithms than with others. We do not want to handicap an
algorithm for which parameter selection is difficult, so we run
our experiments two different ways. In one set of experiments,
we use a 1K validation set to select the best model from each
learning algorithm, and then report the performance of this
model on the large final test set. In the second set of exper-
iments we perform model selection using the large final test
sets (i.e. no validation set) and then report the performance
of the best models on that same final test set. This second
set of experiments approximates the performance that might
be achieved if model selection were done optimally. In all of
our experiments, the final test sets are large enough to make
discerning small differences in AUC reliable.

Table 2 shows the AUC performance of the best models
of each type when selection is done using the large final test
sets. This table represents the best performance that could
be achieved with each learning method if model selection was
done perfectly. Table 3 shows the AUC performance of the
best models of each type when model selection is performed
using 1K validation sets. This presents a more realistic view of
the AUC performance that might be obtained using a simple
approach to model selection, but does not show the AUC
performance that might be obtained if model selection was
done more carefully.



Table 2.

AUC of the best model from each learning algorithm on each problem selected using the large final test set.

MODEL COVER_TYPE ADULT LETTER.P1 LETTER.P2 MEDIS SLAC HYPER_SPEC MEAN
BST-DT 0.9154 0.8918 0.9978 0.9944 0.8275 0.8004 0.9764 0.9148
BAG-DT 0.9020 0.9070 0.9947 0.9809 0.8216 0.8018 0.9623 0.9100
ANN 0.8690 0.8986 0.9936 0.9811 0.8423 0.7981 0.9733 0.9080
SVM 0.8711 0.8980 0.9963 0.9918 0.8290 0.7960 0.9694 0.9074
KNN 0.8767 0.8790 0.9954 0.9873 0.8254 0.7791 0.9528 0.8994
BST-STMP 0.8436 0.9105 0.9824 0.9136 0.8401 0.7777 0.9557 0.8891
DT 0.8476 0.8901 0.9738 0.9454 0.7747 0.7721 0.9212 0.8750
MEAN 0.8751 0.8964 0.9906 0.9706 0.8229 0.7893 0.9587 0.9005
Table 3. AUC of the best model from each learning algorithm on each problem selected using 1K validation sets.
MODEL COVER_TYPE ADULT LETTER.P1 LETTER.P2 MEDIS SLAC HYPER_SPEC MEAN
BST-DT 0.9152 0.8902 0.9974 0.9944 0.8232 0.8004 0.9757 0.9138
BAG-DT 0.9007 0.9057 0.9888 0.9806 0.8216 0.8009 0.9623 0.9087
SVM 0.8687 0.8980 0.9946 0.9918 0.8288 0.7954 0.9694 0.9067
ANN 0.8681 0.8980 0.9929 0.9772 0.8254 0.7940 0.9673 0.9033
KNN 0.8750 0.8790 0.9911 0.9870 0.8253 0.7690 0.9525 0.8970
BST-STMP 0.8428 0.9074 0.9813 0.9136 0.8310 0.7746 0.9557 0.8866
DT 0.8423 0.8742 0.9596 0.9454 0.7716 0.7721 0.9212 0.8695
MEAN 0.8733 0.8932 0.9865 0.9700 0.8181 0.7866 0.9577 0.8979

The entries in both tables show the AUC performance of the
best model that was trained with each of the seven learning
methods on each problem. The algorithm that has the best
AUC on each problem is shown in bold. The last column shows
the mean AUC of each algorithm across the seven problems.

In general, the loss in AUC performance for models selected
using the 1k validation sets as opposed to using the final test
set is small. On average, “optimal” model selection only im-
proves AUC 0.0026 compared to selection with the 1k vali-
dation sets. More sophisticated selection procedures such as
cross-validation might reduce this difference even further. We
conclude that for these problems, 1k validation sets are suf-
ficient to achieve good model selection for AUC. The most
imbalanced data set (Letter.pl) has about 5% positives. The
remaining data sets are more balanced. We suspect that 1k
validation sets yield good model selection for AUC because
AUC is more robust (i.e. low variance) than other measures
such as accuracy even when data is moderately imbalanced.

Looking at Table 2, the model type with best overall AUC
performance is boosted decision trees. It not only has the high-
est mean AUC performance, but boosted trees yield the best
AUC on four of the seven test problems. No other learning
method wins more than one test problem.

The next best learning methods for AUC are bagged deci-
sion trees, neural nets, and SVMs. (When selection is done
using the 1k validation sets, SVMs move slightly ahead of the
neural nets.) Boosted stumps and plain decision trees are not
competitive, though boosted stumps are best on the Adult
data set. It is interesting to note that boosting weaker stump
models is clearly inferior to boosting full decision trees on
most of the test problems: boosting full decision trees yields
better performance than boosting stumps on five of the test
problems and the mean performance for boosted trees is much
higher than the mean performance for boosted stumps. Occa-
sionally boosted stumps perform very well, but when they do
not, they often perform very poorly, giving them poor average

AUC performance.

Although it is clear that boosting full decision trees yields
the best overall AUC performance on these test problems,
the differences in performance between the top four models
(boosted trees, bagged trees, neural nets, and SVMs) is only
about 0.01. The mean difference between the best models
(boosted trees) and the worst models (plain decision trees)
is about 0.04. These results suggest that competitive AUC
performance can be obtained with most learning algorithms
if care is taken to optimize each learning method by exploring
a large variety of control parameters and model variations.

For example, with KNN we not only vary K, but use a vari-
ety of distance functions and also explore variants such as lo-
cally weighted averaging and distance-weighted KNN. When
the model space for KNN is explored this thoroughly, KNN
lags behind the best model by only about 0.0150. KNN per-
forms best when attributes are weighted by gain ratio instead
of unweighted Euclidean distance. We suspect even smarter
distance functions would improve KNN’s performance. We are
not sure what would have to be done to make single decision
trees competitive with the other models. The decision trees
that performed best typically used Bayesian smoothing as op-
posed to Laplacian smoothing or pruning and no smoothing.
Bagging trees with Bayesian smoothing also yielded excel-
lent performance. Although single ID3 trees perform poorly,
bagged ID3 trees perform well.

On most problems, SVMs with RBF kernels perform bet-
ter than SVMs with other kernels. (Because more SVMs with
RBF kernels are trained than the linear or polynomial ker-
nels, the RBF SVMs have a small advantage.) The width of
the RBF kernel that gives best performance changes with the
problem. With KNN, rank-based metrics such as AUC favor
much larger values of K than other metrics such as accuracy.
The best neural nets typically have large hidden layers. Nets
with 32 or 128 hidden units typically performed best.



2.1 Computational Cost

With neural nets there are many parameters to adjust: net size
and architecture, backprop method, update interval, learning
rate, momentum, etc. Because each parameter can affect per-
formance, both singly and in combinations, many different
nets must be trained to adequately explore the parameter
space. As expected, ANNs were one of the most expensive al-
gorithms we trained, particularly nets with 128 hidden units.

SVMs also require adjusting many parameters, though
fewer than ANNs. SVM parameters include the kernel, kernel
parameters, and the regularization parameter. The kernel and
kernel parameters have a big impact on SVM performance.
We trained 121 SVMs on each problem. While most SVMs
trained fast, some SVMs took much longer to train, and a
few never finished. It is the cost of the few SVMs that take
long to train that made SVMs as expensive as neural nets.

Although we experimented with a variety of KNN meth-
ods, distance measures, and many parameter settings for each
method, KNN proved less expensive than neural nets and
SVMs because our training sets contain only 4k points. Larger
training sets would have made KNN much more expensive.

The decisions that have to be made with boosted trees and
stumps are what base tree/stump type to boost and how many
boosting iterations to do. What makes boosting expensive
in practice is that it is not easy to parallelize. Training one
tree or stump is fast, but training thousands takes time. Like
boosting, bagging requires experimenting with the base tree
type. Unlike boosting, however, bagging is easy to parallelize
and usually only 25-100 iterations are needed. This makes
bagged trees cheap, and rather attractive given their good
performance. Simple unbagged/unboosted trees are the least
expensive method we examined, even when many tree types
are tried, but their performance was not that good.

3 Ensembles to Optimize AUC

The previous section compares the AUC performance of the
best single models that we could train with each learning al-
gorithm. In this section we will use the models trained in
the previous section to try to build an ensemble that yields
even better performance. An ensemble is a collection of mod-
els whose predictions are combined by weighted averaging or
voting. Diettrich [6] states that “A necessary and sufficient
condition for an ensemble of classifiers to be more accurate
than any of its individual members is if the classifiers are
accurate and diverse.”

Many methods have been proposed to generate accurate,
yet diverse, sets of models. Bagging [4] trains models of
one type (e.g., C4 decision trees) on bootstrap samples of
the training set. Opitz [16] bags features instead of training
points. Boosting [20] generates a potentially more diverse set
of models than bagging by weighting the training set to force
new models attend to those points that are difficult to classify
correctly. Error-correcting-output-codes (ECOC) [7] creates
models with decorrelated errors by training models for multi-
class problems on different dichotomies. Munro and Parmanto
[15] created diverse neural nets via competition among nodes.

In this section we use the models trained for the empir-
ical comparison in the previous section to build ensembles
that have better AUC performance than any of the individ-

ual models. In total, we have about 2000 models to select from
on each problem. Some of the models have excellent AUC per-
formance. Many models, however, have mediocre or even poor
AUC performance. Rather than combine all models, good and
bad, in an ensemble, we use forward stepwise selection from
the library of models to find a subset of models that when
combined in an ensemble yield excellent performance. The
basic ensemble selection procedure is very simple:

1. Start with the empty ensemble

2. Add to the ensemble the model in the library that maxi-

mizes the ensemble’s AUC on a hillclimbing test-set.
3. Repeat Step 2 for a fixed number of iterations or until all

the models have been used.
4. Return the ensemble from the nested set of ensembles that

has maximum AUC on the hillclimb set.

Models are added to an ensemble by averaging their pre-
dictions with the models already in the ensemble. This makes
adding a model to the ensemble very fast, allowing ensem-
bles with excellent performance to be found in minutes from
collections of 2000 models. Moreover, the selection procedure
allows us to optimize the ensemble to any easily computed
performance metric such as AUC. This is important because
it is difficult to optimize most of the base-level learning meth-
ods to metrics such as AUC.

The parameters we vary with each learning algorithm to
generate the 2000 models are listed in the Appendix. Note
that we do not determine what parameters yield best perfor-
mance when training these models. All models are added to
the library no matter how good or bad they are. For simplic-
ity, we cache the predictions each model makes on the train
and hillclimbing sets. This simplifies working with the library
and makes model selection faster because the models do not
have to be executed during selection.

This simple forward model selection procedure is fast and
effective, but, because there are thousands of models to se-
lect from, sometimes overfits to the hillclimbing set, reducing
ensemble performance. We made three modifications to this
selection procedure to reduce overfitting. These are discussed
in the next three subsections. Each of these methods may be
useful in other applications where forward stepwise selection
is prone to overfitting, such as in feature selection [12].

3.1 Selection with Replacement

With forward model selection without replacement, perfor-
mance improves as the first models are added to the ensemble,
peaks, and then quickly declines. Performance drops quickly
because the best models in the library have been used and se-
lection must now choose from models that are not so good and
thus may reduce ensemble performance. Figure 1 shows this
behavior for root-mean-squared-error. Unfortunately, most er-
ror metrics including AUC yield much bumpier graphs than
this when hillclimbing is done with a small data set, making
it difficult to reliably pick a good stopping point. The loss in
performance can be significant if the true peak is missed.
Figure 1 shows that selecting models with replacement
greatly reduces this problem. Selection with replacement al-
lows models to be added to the ensemble multiple times. Once
peak performance is reached, if the unused models all hurt en-
semble performance, selection will prefer to add models that
have been added before rather than suffer a drop in perfor-
mance. This not only flattens the performance curve past the



peak, but allows the ensemble to weight the models. Models
added to the ensemble multiple times receive more weight,
allowing selection to fine tune the ensemble.

Selection with replacement flattens the curve so much that
a test set is not needed to determine when to stop adding
models to the ensemble. The hillclimbing set can be used
to stop hillclimbing. This means ensemble selection does not
need more test sets than the base-level models would have
used to select model parameters. Ensemble selection uses the
validation set that base-level models would use for parameter
selection to do both parameter and model selection.
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Figure 1. Selection With and Without Replacement.

3.2 Sorted Ensemble Initialization

Forward selection sometimes overfits early in selection when
ensembles are small because sometimes it is possible to find a
few models that when averaged together yield unrealistically
good performance on the hillcimbing set. One way to prevent
this is to initialize ensembles with more models. Instead of
starting with an empty ensemble, we sort the models in the
library by their performance, and put the best N models in
the ensemble. N is chosen by looking at performance on the
hillclimbing set. This typically adds 5-25 of the best models
to an ensemble before greedy stepwise selection begins. Since
each of the N best models performs well, they form a strong
initial ensemble and it is more difficult for greedy selection to
find models that overfit when added to the ensemble.

3.3 Bagged Ensemble Selection

As the number of models in a library increases, the chances
of finding combinations of models that overfit the hillclimbing
set increases. Bagging can minimize this problem. We reduce
the number of models selection can choose from by drawing a
random sample of models from the library and selecting from
that sample. If a particular combination of M models overfits,
the probability of those M models being in a random bag of
models is less than (1 — p)* for p the fraction of models in
the bag. We use p = 0.5, and bag ensemble selection 20 times
to insure that the best models will have many opportunities
to be selected. The final ensemble is the average of the 20
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Figure 2. Benefit of Bagged Selection as a function of p
(average over 7 problems). The right side of the graph at p =1
represents no bagging.

ensembles. Having bags of ensembles may seem complex, but
each ensemble is just a weighted average of models, so the
average of a set of ensembles also is a simple weighted average
of the base-level models.

Figure 2 shows the benefit to AUC of ensemble selection
due to bagging as p, the fraction of models in the bags, varies
from 1 down to 0.025. The percent benefit in the figure is
percent increase in AUC averaged over the seven test prob-
lems. At p = 1, bags contain all models and this is equivalent
to no bagging at all. The graph shows that bagged ensemble
selection improves AUC performance about 10% at p = 0.5
and as much as 12% at p = 0.1. The results in Table 4 are
for p = 0.5, a value selected before looking at the results in
Figure 2. We are currently experimenting with using cross
validation to pick a near optimal value of p for each problem
individually.

3.4 Ensemble Selection AUC Performance

Table 4 compares the AUC performance of ensemble selection
to the models trained with each learning algorithm that had
best AUC when selection is done using 1k validation sets.
Ensemble selection uses these 1k validation sets to perform
model selection for the ensembles. The bottom part of this
table has the same entries as Table 3. Again, bold entries in
the bottom of this table show which model type had the best
AUC. The top line of Table 4 shows the AUC of ensemble
selection. All entries in this line are higher than the entries in
the bottom of the table.

Because we generate so many different models, libraries
usually contain a few models with excellent AUC performance
on any problem. Just selecting the best single model from a
library yields remarkably good AUC performance.

Ensemble selection, however, does find ensembles that out-
perform the best individual models. Ensemble selection out-



Table 4. AUC of the best model from each learning algorithm on each problem selected using 1K validation sets.

MODEL COVER_TYPE ADULT LETTER.P1 LETTER.P2 MEDIS SLAC HYPER_SPEC MEAN
ENS.SEL. 0.9161 0.9125 0.9977 0.9948 0.8381 0.8086 0.9815 0.9214
AVERAGE 0.9034 0.9054 0.9941 0.9900 0.8419 0.8085 0.9725 0.9165
BAYES 0.9016 0.9073 0.9970 0.9918 0.8413 0.8019 0.9698 0.9158
STACKING 0.8397 0.8330 0.9871 0.9905 0.6199 0.7097 0.9679 0.8497
BST-DT 0.9152 0.8902 0.9974 0.9944 0.8232 0.8004 0.9757 0.9138
BAG-DT 0.9007 0.9057 0.9888 0.9806 0.8216 0.8009 0.9623 0.9087
SVM 0.8687 0.8980 0.9946 0.9918 0.8288 0.7954 0.9694 0.9067
ANN 0.8681 0.8980 0.9929 0.9772 0.8254 0.7940 0.9673 0.9033
KNN 0.8750 0.8790 0.9911 0.9870 0.8253 0.7690 0.9525 0.8970
BST-STMP 0.8428 0.9074 0.9813 0.9136 0.8310 0.7746 0.9557 0.8866
DT 0.8423 0.8742 0.9596 0.9454 0.7716 0.7721 0.9212 0.8695

performs the best models trained with the seven learning
methods on all test problems. This suggests that using dif-
ferent learning methods and parameter settings is an effective
procedure for generating libraries that contain a diverse set
of good-performing models. Combining models with Bayesian
averaging, or stacking [22] with logistic regression, yielded
performance no better than the best single models, suggesting
that these ensemble methods have difficulty combining 2000
models [8].

The average AUC of ensemble selection across the problems
is 0.9214. The average performance of the best single models
(the average of the bold entries in the bottom of the table)
is 0.9174. Although ensemble selection outperforms the best
models seven out of seven times, the increase in AUC is only
about 0.0040 compared to the best models, or an increase
in AUC of about 0.5%. One might question if this small in-
crease in AUC is worth the expense of ensemble selection.
The main expense in ensemble selection is training the thou-
sands of base-level models from which ensemble selection se-
lects. Because no one learning method consistently outper-
forms the other learning methods, one needs to train all of
these models if one is to find the model that has best AUC
performance. If one has gone through the expense to train
all of these models, selecting an ensemble from the models
incurs little additional cost, and, as shown in the table, does
yield better AUC. The main concern with ensemble selection
probably is the complexity and poor intelligibility of the final
model (which averages over a number of models of different
types), as opposed to the small increase in computational cost
in finding the ensemble.

3.5 Models Selected by the Ensembles

Table 5. Aggregate Weight Given to Different Types of Models
in the Ensembles.
MODEL ADULT COV_TYPE
ANN 0.3646 0.0382
KNN 0.0368 0.2518
SVM 0.2841 0.1039
DT 0.0879 0.2381
BAG-DT 0.0038 0.0092
BST-DT 0.0572 0.2784
BST-STMP 0.1657 0.0804

Table 5 shows the total weight given to each type of model

on the ADULT and COVER_TYPE test problems. KNN,
BST-DT, and plain DT receive the most weight in the en-
semble for COVER_TYPE. The weights are strikingly differ-
ent for ADULT where ANN, SVM, and BST-STMP receive
the most weight. This suggests that ensemble selection is able
to exploit the different strengths and biases of the different
learning algorithms when optimizing the ensemble’s AUC per-
formance on each problem. We probably can not specify in
advance which kinds of models need to be trained, and what
weight they should be given in the ensemble.

3.6 Optimizing To Any Performance
Metric

ANNs usually are trained to minimize cross entropy or
squared error. Trees and SVMs usually maximize accuracy.
Boosting also is designed to maximize accuracy. Some met-
rics such as precision/recall and ROC are hard to optimize
to. Because model averaging is fast, ensemble selection can
try adding every model in the library to the ensemble at each
step. If the performance of each of these ensembles can be
evaluated quickly on the metric, the ensemble can optimize
to that metric by this greedy, brute force search. A good en-
semble usually will be found if some base-level models or if
combinations of them yield good performance on that metric.
Although we do not know how to optimize the base-level mod-
els to metrics such as AUC, the ensemble can be optimized
to AUC.

Although in this paper we present results for the area un-
der the full ROC plot, in many applications specific regions
of the ROC plot are more important than others. For ex-
ample, the high-precision end of the ROC plot typically is
most important for information retrieval, but the high-recall
end of the ROC plot typically is most important for medi-
cal screening tests. Because ensemble selection can optimize
to any easily computed performance metric, the method can
be used to find ensembles that maximize the area under any
well-specified part of the ROC plot.

3.7 Validation and Hillclimbing Sets

Ensemble selection uses the wvalidation set to “train” an en-
semble, but hillclimbing on this set does not give ensemble
selection an unfair advantage over single models. The valida-
tion set would be needed to select the parameters for each



algorithm (parameter selection), and then to pick the best al-
gorithm (model selection). Ensemble selection uses the same
validation set for parameter selection, model selection, and
ensemble creation.

With some algorithms validation data can be put back in
the train set and the model retrained once parameters are se-
lected. This can also be done with ensemble selection. (Only
the models used in the ensemble would be retrained.) Any
strategy for using and reusing validation sets, including cross
validation, can be used with ensemble selection. We currently
are running experiments with 5-fold cross validation to in-
crease the size of the hillclimbing set to include all of the
training data, not just the held-out samples.

3.8 Computational Complexity

Training all of the models used by ensemble selection is expen-
sive, but most of these models would need to be trained even
if we only wanted to find the single model with the best per-
formance on each problem. Because models are independent,
it is easy to parallelize model creation and distribute training
across machines. It takes about 48 hours to train the 2000
models using a cluster of ten Linux machines. Model train-
ing is automated. There is no parameter tuning or examining
performance on validation sets. Usually, no one model is crit-
ical, so it is not necessary to wait until all models are trained
to begin doing ensemble selection. This provides an any-time
flavor to ensemble selection: ensembles can be trained using
whatever models are available when the ensemble is needed.
It is easy to add more models later.

Forward stepwise ensemble selection is efficient. Adding a
model to an ensemble only requires averaging a model’s pre-
dictions with the ensemble’s predictions, which is O(D) for
D the size of the hillclimbing set. If there are M models to
choose from, this is done M times for each selection step. If
selection is run K steps, the cost of ensemble selection is only
O(D*M*K) assuming the metric can be computed in O(D). If
the metric is more expensive than O(D) (e.g., ROC requires
sorting and thus is O(D*logD)), recomputing the metric dom-
inates. Using a JAVA implementation, selecting an ensemble
from a library of M = 2000 models, a hillclimbing set with
D = 1000 points, and K = 200 takes about a minute on a
medium-power workstation. If selection is bagged 20 times, it
takes about 20 minutes to build the final ensemble.

4 Related Work

There are few comprehensive empirical studies comparing
learning algorithms, and even fewer that use AUC as a perfor-
mance metric. STATLOG is perhaps the best known empirical
study of performance of learning algorithms [11]. STATLOG
was a very comprehensive study when it was performed, but
since then several new learning algorithms have emerged (e.g.,
bagging, boosting, SVMs) that have excellent performance.
Also STATLOG didn’t use AUC as a performance criterion.
LeCun et al. [13] presents a study that compares several learn-
ing algorithms (including SVMs) on a handwriting recognition
problem using three performance criteria: accuracy, rejection
rate, and computational cost. Cooper et al. [5] present results
from a study that evaluates nearly a dozen learning methods

on a real medical data set using both accuracy and an AUC-
like metric. Lim et al. [14] perform an empirical comparison of
decision trees and other classification methods using accuracy
as the main criterion. Bauer and Kohavi [1] present an impres-
sive empirical analysis of ensemble methods such as bagging
and boosting, but do not examine the AUC performance of
these methods. Provost and Domingos [18] examine the is-
sue of predicting probabilities with decision trees, including
smoothed and bagged trees. Bradley [3] uses accuracy and
AUC to compare the performance of a number of algorithms.
Provost and Fawcett [19] discusses the importance of evaluat-
ing learning algorithms on metrics other than accuracy such
as ROC.

There is a large body of work in ensemble learning. We
mentioned some of the representative work in the area in Sec-
tion 3. However, as far as we know, the ensemble selection
method proposed in this paper is the first method that can
directly optimize any performance metric, in particular AUC.

5 Conclusions

The best learning algorithms for AUC on the seven test prob-
lems are boosted full decision trees, bagged decision trees,
neural nets, and SVMs. Surprisingly, maximum margin meth-
ods such as SVMs and boosted decision trees yield excellent
AUC performance. We had not expected that maximizing the
margin to a decision boundary would provide a good basis for
ordering cases that fall far from those boundaries. We were
able to obtain surprisingly good AUC performance with each
learning algorithm by very thoroughly tuning each algorithms
parameters. Nevertheless, KNN, plain decision trees (includ-
ing smoothed probabilistic trees), and boosted stumps usually
did not yield AUC performance that was competitive with the
best models.

For the seven data sets we examined, model selection us-
ing 1k validation sets was nearly as good as optimal model
selection using the final test sets.

Ensemble selection uses forward stepwise selection to se-
lect a subset of models that optimize the ensemble’s AUC
performance. Using a variety of learning algorithms and pa-
rameters for these algorithms proved to be an effective way of
generating a collection of diverse, high quality models, some
of which have excellent AUC. In our experiments with seven
test problems, ensemble selection consistently found ensem-
bles that had better AUC than the best models trained with
any of the learning method, including models trained with
bagging and boosting.

6 Appendix: Building Model Libraries

KNN: we use 26 values of K ranging from K = 1 to
K = [trainset|. We use KNN with Euclidean distance and
Euclidean distance weighted by gain ratio. We also use dis-
tance weighted KNN, and locally weighted averaging. The
kernel widths for locally weighted averaging vary from 2° to
210 times the minimum distance between any two points in
the train set.

ANN: we train nets with gradient descent backprop and vary
the number of hidden units {1, 2, 4, 8, 32, 128} and the mo-
mentum {0, 0.2, 0.5, 0.9}. We don’t use validation sets to do



weight decay or early stopping. Instead, we stop the nets at
many different epochs so that some nets underfit or overfit.
DT: we vary the splitting criterion, pruning options, and
smoothing (Laplacian or Bayesian smoothing). We use all of
the DT models in Buntine’s IND package: Bayes, ID3, CART,
CARTO, C4, MML, and SMML. We also generate trees of
type C44 (C4 with no pruning), C44BS (C44 with Bayesian
smoothing), and MMLLS (MML with Laplacian smoothing).
See [18] for descriptions of C44.

BAG-DT: we bag 25 trees of each type. Each tree trained on
a bootstrap sample is added to the library, as well as the final
bagged ensemble that averages all these trees. With BST-
DT we boost each tree type. Boosting can overfit, so we add
boosted DTs to the library after {2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048} steps of boosting. With BST-STMP we use
stumps (single level decision trees) with 5 different splitting
criteria, each boosted {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
2048, 4096, 8192} steps.

SVMs: we use most kernels in SVMLight [10] {linear, poly-
nomial degree 2 & 3, radial with width {0.001, 0.005, 0.01,
0.05, 0.1, 0.5, 1, 2}} and vary the regularization parameter
C by factors of ten from 10™7 to 10%. The output range of
SVMs is [—o0, +00] instead of [0,1]. To make the SVM pre-
dictions compatible with other models, we use Platt’s method
to convert SVM outputs to probabilities by fitting them to a
sigmoid [17].
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