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Abstract
A challenging problem in hierarchical classification is to leverage the hierarchi-
cal relations among classes for improving classification performance. An even
greater challenge is to do so in a manner that is computationally feasible for the
large scale problems usually encountered in practice. This paper proposes a set
of Bayesian methods to model hierarchical dependencies among class labels us-
ing multivariate logistic regression. Specifically, the parent-child relationships are
modeled by placing a hierarchical prior over the children nodes centered around
the parameters of their parents; thereby encouraging classes nearby in the hier-
archy to share similar model parameters. We present variational algorithms for
tractable posterior inference in these models, and provide a parallel implementa-
tion that can comfortably handle large-scale problems with hundreds of thousands
of dimensions and tens of thousands of classes. We run a comparative evaluation
on multiple large-scale benchmark datasets that highlights the scalability of our
approach, and shows a significant performance advantage over the other state-of-
the-art hierarchical methods.

1 Introduction
With the tremendous growth of data, providing a multi-granularity conceptual view using hierar-
chical classification (HC) has become increasingly important. The large taxonomies for web page
categorization at the Yahoo! Directory and the Open Directory Project, and the International Patent
Taxonomy are examples of widely used hierarchies. The large hierarchical structures present both
challenges and opportunities for statistical classification research. Instead of focusing on individual
classes in isolation, we need to address joint training and inference based on the hierarchical depen-
dencies among the classes. Moreover, this has to be done in an computationally efficient and scalable
manner, as many real HC problems are characterized by large taxonomies and high dimensionality.

In this paper, we investigate a Bayesian framework for leveraging the hierarchical class structure.
The Bayesian framework is a natural fit for this problem as it can seamlessly capture the idea that the
models at the lower levels of the hierarchy are specialization of the models at the ancestor nodes.We
define a hierarchical Bayesian model where the prior distribution for the parameters at a node is a
Gaussian centered at the parameters of the parent node. This prior encourages the parameters of
nodes that are close in the hierarchy to be similar, enabling propagation of information across the hi-
erarchical structure and leading to inductive transfer (sharing statistical strength) among the models
corresponding to the different nodes. The strength of the Gaussian prior, and hence the amount of
information sharing between nodes, is controlled by its covariance parameter, which is also learned
from the data. Modelling the covariance structures gives us the flexibility to incorporate different
ways of sharing information in the hierarchy. For example, consider a hierarchical organization of
all animals with two sub-topics mammals and birds. By placing feature specific variances, the model
can learn that the sub-topic parameters are more similar along common features like ‘eyes’,‘claw’
and less similar in other sub-topic specific features like ‘feathers’, ‘tail’ etc. As another example,
the model can incorporate children-specific covariances that allows some sub-topic parameters to be
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less similar to their parent and some to be more similar; for e.g. sub-topic whales is quite distinct
from its parent mammals compared to its siblings felines, primates. Formulating such constraints
in non-Bayesian large-margin approaches is not as easy, and to our knowledge has not done before
in the context of hierarchical classification. Other advantages of a fully Bayesian treatment are that
there no reliance on cross-validation, the outputs have a probabilistic interpretation, and it is easy to
incorporate prior domain knowledge.

Our approach shares similarity to the correlated Multinomial logit [18] (corrMNL) in taking a
Bayesian approach to model the hierarchical class structure, but improves over it in two significant
aspects - scalability and setting hyperparameters. Firstly, CorrMNL uses slower MCMC sampling
for inference, making it difficult to scale to problems with more than a few hundred features and a
few hundred nodes in the hierarchy. By modelling the problem as a Hierarchical Bayesian Logistic
Regression (HBLR), we are able to vastly improve scalability by 1) developing variational methods
for faster hierarchical inference, 2) introducing even faster algorithms (partial MAP) to approximate
the variational inference at insignificant cost in classification accuracy, and 3) parallelizing the in-
ference. The approximate variational inference (1 plus 2) reduces the computation time by several
order of magnitudes (750x) over MCMC, and the parallel implementation in a Hadoop cluster [4]
further improves the time almost linearly in the number of processors. These enabled us to com-
fortably conduct joint posterior inference for hierarchical logistic regression models with tens of
thousands of categories and hundreds of thousands of features.

Secondly, a difficulty with the Bayesian approaches, that has been largely side-stepped in [18], is
that, when expressed in full generality, they leave many hyperparameters open to subjective input
from the user. Typically, these hyper-parameters need to be set carefully as they control the amount
of regularization in the model, and traditional techniques such as Empirical Bayes or cross-validation
encounter difficulties in achieving this. For instance, Empirical Bayes requires the maximization of
marginal likelihood which is difficult to compute in hierarchical logistic models [9] in general, and
cross-validation requires reducing the number of free parameters for computational reasons, poten-
tially losing the flexibility to capture the desired phenomena. In contrast, we propose a principled
way to set the hyper-parameters directly from data, using an approximation to the observed Fisher
Information Matrix. Our proposed scheme technique can be easily used to set a large number of
hyper-parameters without losing model tractability and flexibility.

To evaluate the proposed techniques we run a comprehensive empirical study on several large scale
hierarchical classification problems. The results show that our approach is able to leverage the
class hierarchy and obtain a significant performance boost over leading non-Bayesian hierarchical
classification methods, as well as consistently outperform flat methods that do not use the hierarchy
information.

Other Related Work: Most of the previous work in HC has been primarily using large-margin
discriminative methods. Some of the early works in HC [10, 14] use the hierarchical structure to
decompose the classification problem into sub-problems recursively along the hierarchy and allocate
a classifier at each node. The hierarchy is used to partition the training data into node-specific subsets
and classifiers at each node are trained independently without using the hierarchy any further. Many
approaches have been proposed to better utilize the hierarchical structure. For instance, in [22, 1],
the output of the top-level classifiers was used as additional features for the instance at the second-
level classifiers. Smoothing the estimated parameters in naive Bayes classifiers along each path from
the root to a leaf node has been tried in [17]. [20, 6] proposed large-margin discriminative methods
where the discriminant function at each node takes the contributions from all nodes along the path
to the root node, and the parameters are jointly learned to minimize a global loss over the hierarchy.
Recently, enforcing orthogonality constraints between parent and children classifiers was shown to
achieve state-of-art performance [23].

2 The Hierarchical Bayesian Logistic Regression (HBLR) Framework
Define a hierarchy as a set of nodes Y = {1, 2...} with the parent relationship π : Y → Y where
π(y) is the parent of node y ∈ Y . Let D = {(xi, ti)}Ni=1 denote the training data where xi ∈ Rd is
an instance, ti ∈ T is a label, where T ⊂ Y is the set of leaf nodes in the hierarchy labeled from 1
to |T |. We assume that each instance is assigned to one of the leaf nodes in the hierarchy. Let Cy be
the set of all children of y.
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For each node y ∈ Y , we associate a parameter vector wy which has a Gaussian prior. We set the
mean of the prior to the parameter of the parent node, wπ(y). Different constraints on the covariance
matrix of the prior corresponds to different ways of propagating information across the hierarchy. In
what follows, we consider three alternate ways to model the covariance matrix which we call M1,
M2 and M3 variants of HBLR. In the M1 variant all the siblings share the same spherical covariance
matrix. Formally, the generative model for M1 is

M1 wroot ∼ N (w0,Σ0), αroot ∼ Γ(a0, b0)

wy| wπ(y),Σπ(y) ∼ N (wπ(y),Σπ(y)) ∀y, αy ∼ Γ(ay, by) ∀y /∈ T
t | x ∼ Multinomial(p1(x), p2(x), .., p|T |(x)) ∀(x, t) ∈ D

pi(x) = exp(w>i x)/Σt′∈T exp(w>t′ x) (1)

The parameters of the root node are drawn using user specified parametersw0,Σ0, a0, b0. Each non-
leaf node y /∈ T has its own αy drawn from a Gamma with the shape and inverse-scale parameters
specified by ay and by . Each wy is drawn from the Normal with mean wπ(y) and covariance matrix
Σπ(y) = α−1π(y)I . The class-labels are drawn from a Multinomial whose parameters are a soft-max
transformation of the wys from the leaf nodes. This model leverages the class hierarchy information
by encouraging the parameters of closely related nodes (parents, children and siblings) to be more
similar to each other than those of distant ones in the hierarchy. Moreover, by using different inverse
variance parameters αy for each node, the model has the flexibility to adapt the degree of similarity
between the parameters (i.e. parent and children nodes) on a per family basis. For instance it can
learn that sibling nodes which are higher in the hierarchy (e.g. mammals and birds) are generally
less similar compared to sibling nodes lower in the hierarchy (e.g. chimps and orangutans).

Although this model is equivalent to the corrMNL proposed in [18], the hierarchical logistic re-
gression formulation is different from corrMNL and has a distinct advantage that the parameters
can be decoupled. As we shall see in Section 3, this enables the use of scalable and parallelizable
variational inference algorithms. In contrast, in corrMNL the soft-max parameters are modeled as
a sum of contributions along the path from a leaf to the root-node. This introduces two layers of
dependencies between the parameters in the corrMNL model (inside the normalization constant as
well along the path from leaves to root-node) which makes it less amenable to efficient variational
inference. Even if one were to develop a variational approach for the corrMNL parameterization, it
would be slower and not efficient for parallelization.

Although the M1 approach is rational, one may argue that it would be beneficial to allow the diagonal
elements of the covariance matrix Σπ(y) to be feature-specific instead of uniform. In our previous
example with sub-topics mammals and birds, we may want wmammals , wbirds to be commonly
close to their parent in some dimensions (e.g., in some common features like ‘eyes’,‘breathe’ and
‘claw’) but not in other dimensions (e.g., in bird specific features like ‘feathers’ or ‘beak’). We
accommodate this by replacing prior αy using α(i)

y for every feature (i). This form of setting the
prior is referred to as Automatic Relevant Determination (ARD) and forms the basis of several works
such as Sparse Bayesian Learning [19], Relevance Vector Machines [3], etc. For the HC problem,
we define the M2 variant of the HBLR approach as:

M2 wy| wπ(y),Σπ(y) ∼ N (wπ(y),Σπ(y)) ∀y

α(i)
y ∼ Γ(a(i)y , b(i)y ) i = 1..d, ∀y /∈ T

where Σ−1
π(y) = diag(α

(1)

π(y), α
(2)

π(y), . . . , α
(d)

π(y))

Yet another extension of the M1 model would be to allow each node to have its own covariance
matrix for the Gaussian prior over wy , not shared with its siblings. This enables the model to learn
how much the individual children nodes differ from the parent node. For example, consider topic
mammals and its two sub-topics whales and carnivores; the sub-topic whales is very distinct from a
typical mammal and is more of an ‘outlier’ topic. Such mismatches are very typical in hierarchies;
especially in cases where there is not enough training data and an entire subtree of topics is collapsed
as a single node. M3 aims to cope up with such differences.

M3 wy| wπ(y),Σy ∼ N (wπ(y),Σy) ∀y
αy ∼ Γ(ay, by) ∀y /∈ T

Note that the only difference between M3 and M1 is that M3 uses Σy = α−1y I instead of Σπ(y) in
the prior for wy . In our experiments we found that M3 consistently outperformed the other variants
suggesting that such effects are important to model in HC. Although it would be natural to extend
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M3 by placing ARD priors instead of the uniform αy , we do not expect to see better performance
due to the difficulty in learning a large number of parameters. Preliminary experiments confirmed
our suspicions so we did not explore this direction further.

3 Inference for HBLR
In this section, we present the inference method for M2 which is harder. The procedure can be easily
extended for M1 and M3 1. The posterior of M2 is given by

p(W,α|D) ∝ p(D|W,α)p(W,α) (2)

∝
∏

(x,t)∈D

exp(w>t x)∑
t′∈T

exp(w>t′x)

∏
y∈Y \T

d∏
i=1

p(α(i)
y |a(i)y , b(i)y )

∏
y∈Y

p(wy|wπ(y),Σπ(y))

Closed-form solution for the posterior is not possible due to the non-conjugacy between the lo-
gistic likelihood and the Gaussian prior, we therefore resort to variational methods to compute the
posterior. However, using variational methods are themselves computational intractable in high di-
mensional scenarios due to the requirement of a matrix inversion which is computationally intensive.
Therefore, we explore much faster approximation schemes such as partial MAP inference which are
highly scalable. Finally, we show the resulting approximate variational inference procedure can be
parallelized in a map-reduce framework to tackle the large-scale problems that would be impossible
to solve on a single CPU.

3.1 Variational Inference

Starting with a simple factored form for the posterior we seek such a distribution q which is closest
in KL divergence to the true posterior p. We use independent Gaussian q(wy) and Gamma q(αy)
posterior distributions for wy and αy per node as the factored representation:

q(W,α) =
∏

y∈Y \T

q(αy)
∏
y∈Y

q(wy) ∝
∏

y∈Y \T

d∏
i=1

Γ(.|τ (i)y , υ(i)
y )

∏
y∈Y

N (.|µy,Ψy)

In order to tackle the non-conjugacy inside p(D|W,α) in (2), we use a suitable lower-bound to the
soft-max normalization constant proposed by [5], for any β ∈ R , ξk ∈ [0,∞)

log(
∑
k

egk ) ≤ β +
∑
k

[
gk − β − ξk

2
+ λ(ξk)((gk − β)2 − ξ2k) + log(1 + eξk )

]
where λ(ξ) = 1

2ξ

(
1

1+e−ξ
− 1

2

)
where β , ξk are variational parameters which we can optimize to get the tightest possible bound.

For every (x, y) we introduce variational parameters βx and ξxy . We now derive an EM algorithm
that computes the posterior in the E-step and maximizes the variational parameters in the M-step.
Variational E-Step The local variational parameters are fixed, and the posterior for a parameter is
computed by matching the log-likelihood of the posterior with the expectation of log-likelihood
under the rest of the parameters. The parameters are updated as1,

Ψ−1
y = I(y ∈ T )

∑
(x,t)∈D

2λ(ξxy)xx> + diag(
τπ(y)
υπ(y)

) + |Cy|diag(
τy
υy

) (3)

µy = Ψy

I(y ∈ T )
∑

(x,t)∈D

(I(t = y)− 1

2
+ 2λ(ξxy)βx)x+ diag(

τπ(y)
υπ(y)

)µπ(y) + diag(
τy
υy

)
∑
c∈Cy

µc


υ(i)
y = b(i)y +

∑
c∈Cy

Ψ(i,i)
y + Ψ(i,i)

c + (µ(i)
y − µ(i)

c )2 and τ (i)y = a(i)y +
|Cy|

2
(4)

Variational M-Step We keep the parameters of the posterior distribution fixed and maximize the
variational parameters ξxy, βx. Refer to [5] for detailed M-step derivations,

ξ2xy = x> diag(
τy
υy

)x+ (βx − µ>y x)2 βx = (.5(.5|T | − 1) +
∑
y∈T

λ(ξxy)µ>y x)/
∑
y∈T

λ(ξxy)

Class-label Prediction After computing the posterior, one way to compute the probability of a target
class-label given a test instance is to simply plugin the posterior mean for prediction. A more
principled way would be to compute the predictive distribution of the target class label l given the

1 Complete derivations are presented in the extended version located at http://www.cs.cmu.edu/˜sgopal1.
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test instance,

p(l|x) =

∫
p(l,W|x)dW ≈

∫
p(l|W, x)q(W)dW (5)

The above integral cannot be computed in closed form and people have often resorted to probit
approximations [16]. We take an alternative route by calculating the joint posterior p(l,W|x) by
variational approximations. We assume the following factored form for the predictive distribution,

q̃(l,W) =
∏
y∈T

q̃(wy)q̃(ly) ≡
∏
y∈T

N (.|µ̃y, Ψ̃y)Bern(.|p̃y)

The posterior can be calculated as before, by introducing variational parameters ξ̃xy , β̃x and match-
ing the log likelihoods. Substituting q̃(l,W) in (5), we see that the predictive distribution is given
by q̃(l) and the target class label is given by arg maxy∈T p̃y .

3.2 Partial MAP Inference

In most applications, the requirement for a matrix inversion in step (3) could be demanding. In such
scenarios, we split the inference into two stages, first calculating the posterior of wy using MAP
solution, and second calculating the posterior of αy . In the first stage, we find the MAP estimate
wmapy and then use laplace approximation to approximate the posterior using a separate Normal
distribution for each dimension, thereby leading to a diagonal covariance matrix. Note that due to
the laplace approximation, wmapy and the posterior mean µy coincide.

µ = arg max
W

∑
y∈T

−1

2
(wy − wπ(y))> diag(

τπ(y)
υπ(y)

)(wy − wπ(y)) + log p(D|W,α) (6)

(Ψ(i,i)
y )−1 =

∑
(x,t)∈Dy

x(i)pxy(1− pxy)x(i)

where pxy is the probability that training instance x is labeled as y. The arg max in (6) can be
computed for all µy at the same time using optimization techniques like LBFGS [13]. For the
second stage, parameters τy and υy are updated using (4). Full MAP inference is also possible by
performing an alternating maximization between wy, αy but we do not recommend it as there is no
gain in scalability compared to partial MAP Inference and it loses the posterior distribution of αy .

3.3 Parallelization

For large hierarchies, it might be impractical to learn the parameters of all classes, or even store
them in memory, on a single machine. We therefore, devise a parallel memory-efficient implemen-
tation scheme for our partial MAP Inference. There are 4 sets of parameters that are updated -
{µy,Ψy, τy, νy}. The Ψy, τy, νy can be updated in parallel for each node using (3),(4).

For µ, the optimization step in (6) is not easy to parallelize since the w’s are coupled together inside
the soft-max function. To make it parallelizable we replace the soft-max function in (1) with multi-
ple binary logistic functions (one for each terminal node), which removes the coupling of parameters
inside the log-normalization constant. The optimization can now be done in parallel by making the
following observations - firstly note that the optimization problem in (6) is concave maximation,
therefore any order of updating the variables reaches the same unique maximum. Secondly, note
that the interactions between the wy’s are only through the parent and child nodes. By fixing the
parameters of the parent and children, the parameter wy of a node can be optimized independently
of the rest of the hierarchy. One simple way to parallelize is to traverse the hierarchy level by level,
optimize the parameters at each level in parallel, and iterate until convergence. A better way that
achieves a larger degree of parallelization is to iteratively optimize the odd and even levels - if we fix
the parameters at the odd levels, the parameters of parents and the children of all nodes at even levels
are fixed, and the wy’s at all even levels can be optimized in parallel. The same goes for optimizing
the odd level parameters. To aid convergence we interleave the µ,Ψ updates with the τ, ν updates
and warm-start with the previous value of µy . In practice, for the larger hierarchies we observed
speedups linear in the number of processors. Note that the convergence follows from viewing this
procedure as block co-ordinate ascent on a concave differentiable function [15].

We tested our parallelization framework on a cluster running map-reduce based Hadoop 20.2 with
64 worker nodes with 8 cores and 16GB RAM each. We used Accumulo 1.4 key-value store for
fast retrieve-update of the wys. On this hardware, our experiments on the largest dataset with 15358
class labels and 347256 features took just 38 minutes. Although the map-reduce framework is not
a requirement; it is a ubiquitous paradigm in distributed computing and having an implementation
compatible with it is a definite advantage.
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Table 1: Dataset Statistics
Dataset #Training #Testing #Class-Labels #Leaf-labels Depth #Features
CLEF 10000 1006 87 63 4 89
NEWS20 11260 7505 27 20 3 53975
LSHTC-small 4463 1858 1563 1139 6 51033
LSHTC-large 93805 34905 15358 12294 6 347256
IPC 46324 28926 552 451 4 541869

4 Setting prior parameters
Thew0,Σ0 represent the overall mean and covariance structure for thewy . We setw0 = 0 and Σ0 =

I because of their minimal effect on the rest of the parameters. The a(i)y , b
(i)
y are variance components

such that
b(i)y

a
(i)
y

represents the expected variance of the w(i)
y . Typically, choosing these parameters is

difficult before seeing the data. The traditional way to overcome this is to learn {ay, by} from the
data using Empirical Bayes. Unfortunately, in our proposed model, one cannot do this as each
{ay, by} is associated with a single αy . Generally, we need more than one sample value to learn the
prior parameters effectively [7].

We therefore resort to a data dependent way of setting these parameters by using an approximation
to the observed Fisher Information matrix. We first derive on a simpler model and then extend it
to a hierarchy. Consider the following binary logistic model with unknown w and let the Fisher
Information matrix be I and observed Fisher Information Î

Y | x ∼ Bernoulli( exp(w>x)

1 + exp(w>x)
); I = E

[
p(x)(1− p(x))xx>

]
, Î =

∑
(x,t)∈D

p̂(x)(1− p̂(x))xx>

It is well known that I−1 is the asymptotic covariance of the MLE estimator of w, so reasonable
guess for the covariance of a Gaussian prior over w could be the observed Î−1 from a dataset
D. The problem with Î−1 is that we do not have a good estimate p̂(x) for a given x as we have
exactly one sample for a given x i.e each instance x is labeled exactly once with certainty, therefore
p̂(x)(1− p̂(x)) will always be zero. Therefore we approximate p̂(x) as the sample prior probability
independent of x, i.e. p̂(x) = p̂ = Σ(x,t)∈D

t
|D| . Now, the prior on the covariance of wy can be set

such that the expected covariance is Î−1. To extend this to HC, we need to handle multiple classes,
which can be done by estimating Î(y)−1 for each y ∈ T , as well handle multiple levels, which can
be done by recursively setting ay, by as follows,

(a(i)y , b(i)y ) =

 (
∑
c∈Cy

a
(i)
c ,

∑
c∈Cy

b
(i)
c ) if y /∈ T

(1, Î(y)−1(i,i)) if y ∈ T
where Î(y) is the observed Fisher Information matrix for class label y. This way of setting the priors
is similar to the method proposed in [12], the key differences are in approximating p(x)(1 − p(x))
from the data rather using p(x) = 1

2 , extension to handle multiple classes as well as hierarchies.

We also tried other popular strategies such as setting improper gamma priors Γ(ε, ε) ε → 0 widely
used in many ARD works (which is equivalent to using type-2 ML for the α’s if one uses variational
methods [2]) and Empirical Bayes using a single a and b (as well as other Empirical Bayes variants).
Neither of worked well, the former being to be too sensitive to the value of ε which is in agreement
with the observations made by [11] and the latter constraining the model by using a single a and b.
We do not discuss this any further due to lack of space.

5 Experiments Results
Throughout our experiements, we used 4 popular benchmark datasets (Table 1) with the recom-
mended train-test splits - CLEF[8], NEWS202, LSHTC-{small,large}3, IPC4.

First, to evaluate the speed advantage of the variational inference, we compare the full variational
{M1,M2,M3}-var and partial MAP {M1,M2,M3-map} inference 5 for the three variants of HBLR to
the MCMC sampling based inference of CorrMNL [18]. For CorrMNL, we used the implementation
as provided by the authors6. We performed sampling for 2500 iterations with 1000 for burn-in.
2 http://people.csail.mit.edu/jrennie/20Newsgroups/ 3 http://lshtc.iit.demokritos.gr/
4 http://www.wipo.int/classifications /ipc/en/support/ 5 Code available at http://www.cs.cmu.edu/˜sgopal1
6 http://www.ics.uci.edu/ babaks/Site/Codes.html

6



Table 2: Comparison with CorrMNL: Macro-F1 and Micro-F1 on the CLEF dataset
{M1,M2,M3}-var {M1,M2,M3}-map {M1,M2,M3}-flat

CorrMNL M1 M2 M3 M1 M2 M3 M1 M2 M3
Macro-f1 55.59 56.67 51.23 59.67 55.53 54.76 59.65 52.13 48.78 55.23
Micro-f1 81.10 81.21 79.92 81.61 80.88 80.25 81.41 79.82 77.83 80.52
Time (mins) 2279 79 81 80 3 3 3 3 3 3
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Figure 1: Micro-F1 (left) & Macro-F1 (right) on the CLEF dataset with limited number of training examples.

Re-starts with different initialization values gave the same results for both MCMC and variational
methods. All models were run on a single CPU without parallelization. We used the small CLEF[8]
dataset in order to be able to run CorrMNL model in reasonable time. The results are presented
in Table 2. For an informative comparison, we also included the results of {M1,M2,M3}-flat, our
proposed approach using a flat hierarchy. With regards to scalability, partial MAP inference is
the most scalable method being orders of magnitude faster (750x) than CorrMNL. Full variational
inference, although less scalable as it requires O(d3) matrix inversions in the feature space, is still
orders of magnitude faster (20x) than CorrMNL. In terms of performance, we see that the partial
MAP inference for the HBLR has only small loss in performance compared to the full variational
inference while having similar training time to the flat approach that does not model the hierarchy
({M1,M2,M3}-flat).

Next, we compare the performance of HBLR to several other competing approaches:

1. Hierarchical Baselines: We selected 3 representative hierarchical methods that have shown to
have state-of-the-art performance - Hierarchical SVM [6] (HSVM), a large-margin discriminative
method with path-dependent discriminant function. Orthogonal Transfer [23] (OT), a method en-
forcing orthogonality constraints between the parent node and children and Top-down Classification
[14] (TD) Top-down decision making using binary SVMs trained at each node.

2. Flat Baselines: Typical flat approaches which do not make use of the hierarchy. We tested One-
versus rest Binary logistic Regressions (BLR), Multiclass Logistic Regression (MLR), One-versus
Rest Binary SVMs (BSVM), and Multiclass SVM (MSVM) [21].

For all competing approaches, we tune the regularization parameter using 5 fold CV with a range
of values from 10−5 to 105. For the HBLR models, we used partial MAP Inference because full
variational is not scalable to high dimensions. The IPC and LSHTC-large are very large datasets so
we are unable to test any method other than our parallel implementation of HBLR, and BLR, BSVM
which can be trivially parallelized. Although TD can be parallelized we did not pursue this since
TD did not achieve competitive performance on the other datasets. Parallelizing the other methods
is not obvious and has not been discussed in previous literature to the best of our knowledge.

Table 3 summarizes the results obtain by the different methods. The performance was measured us-
ing the standard macro-F1 and micro-F1 measures [14]. The significance tests are performed using
sign-test for Micro-F1 and a wilcoxon rank test on the Macro-F1 scores. For every data collection,
each method is compared to the best performing method on that dataset. The null hypothesis is that
there is no significanct difference between the two systems being compared, the alternative is that
the best-performing-method is better. Among M1,M2 and M3, the performance of M3 seems to be
consistently better than M1, followed by M2. Although M2 is more expressive than M1, the benefit
of a better model seems to be offset by the difficulty in learning a large number of parameters.

Comparing to the other hierarchical baselines, M3 achieves significantly higher performance on all
datasets, showing that the Bayesian approach is able to leverage the information provided in the
class hierarchy. Among the baselines, we find that the average performance of HSVM is higher
than the TD, OT. This can be partially explained by noting that both OT and TD are greedy top-
down classification methods and any error made in the top level classifications propagates down to
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Table 3: Macro-F1 and Micro-F1 on the 4 datasets. Bold faced number indicate best performing method. The
results of the significance tests are denoted * for a p-value less than 5% and † for p-value less than 1%.

{M1,M2,M3}-map Hierarchical methods Flat methods
M1 M2 M3 HSVM OT TD BLR MLR BSVM MSVM

CLEF
Macro-f1 55.53† 54.76† 59.65 57.23* 37.12† 32.32† 53.26† 54.76† 48.59† 54.33†

Micro-f1 80.88* 80.25* 81.41 79.72† 73.84† 70.11† 79.92† 80.52† 77.53† 80.02†

NEWS20
Macro-f1 81.54 80.91* 81.69 80.04† 81.20 80.86* 82.17 81.82 82.32 81.73
Micro-f1 82.24* 81.54* 82.56* 80.79* 81.98* 81.20† 82.97 82.56* 83.10 82.47*
LSHTC-small
Macro-f1 28.81† 25.81† 30.81 21.95† 19.45† 20.01† 28.12† 28.38* 28.62* 28.34*
Micro-f1 45.48 43.31† 46.03 39.66† 37.12† 38.48† 44.94† 45.20 45.21* 45.62
LSHTC-large
Macro-f1 28.32* 24.93† 28.76 - - - 27.91* - 27.89* -
Micro-f1 43.98 43.11† 44.05 - - - 43.98 - 44.03 -
IPC
Macro-f1 50.43† 47.45† 51.06 - - - 48.29† - 45.71† -
Micro-f1 55.80* 54.22† 56.02 - - - 55.03† - 53.12† -

the leaf node; in contrast to HSVM which uses an exhaustive search over all labels. However, the
result of OT do not seem to support the conclusions in [23]. We hypothesize two reasons - firstly,
the orthogonality condition which is assumed in OT does not hold in general, secondly, unlike
[23] we use cross-validation to set the underlying regularization parameters rather than setting them
arbitrarily to 1 (which was used in [23]).

Surprisingly, the hierarchical baselines (HSVM,TD and OT) experience a very large drop in perfor-
mance on LSHTC-small when compared to the flat baselines, indicating that the hierarchy informa-
tion actually mislead these methods rather than helping them. In contrast, M3 is consistently better
than the flat baselines on all datasets except NEWS20. In particular, M3 performs significantly bet-
ter on the largest datasets, especially in Macro-F1, showing that even very large class hierarchies can
convey very useful information, and highlighting the importance of having a scalable, parallelizable
hierarchical classification algorithm.

To further establish the importance of modeling the hierarchy, we test our approach under scenarios
when the number of training examples is limited. We expect the hierarchy to be most useful in
such cases as it enables of sharing of information between class parameters. To verify this, we
progressively increased the number of training examples per class-label on the CLEF dataset and
compared M3-map with the other best performing methods. Figure 1 reports the results of M3-
map, MLR, BSVM, MSVM averaged over 20 runs. The results shows that M3-map is significantly
better than the other methods especially when the number of examples is small. For instance, when
there is exactly one training example per class, M3-map achieves a whopping 10% higher Micro-
F1 and a 2% higher Macro-F1 than the next best method. We repeated the same experiments on
the NEWS20 dataset but however did not find an improved performance even with limited training
examples suggesting that the hierarchical methods are not able to leverage the hierarchical structure
of NEWS20.

6 Conclusion
In this paper, we presented the HBLR approach to hierarchical classification, focusing on scalable
ways to leverage hierarchical dependencies among classes in a joint framework. Using a Gaussian
prior with informative mean and covariance matrices, along with fast variational methods, and a
practical way to set hyperparameters, HBLR significantly outperformed other popular HC methods
on multiple benchmark datasets. We hope this study provides useful insights into how hierarchical
relationships can be successfully leveraged in large-scale HC. In future, we would like to adapt this
approach to equivalent non-bayesian large-margin discriminative counterparts.
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