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Abstract

We consider the problem of learning Bayes Net
structures for related tasks. We present an algo-
rithm for learning Bayes Net structures that takes
advantage of the similarity between tasks by bi-
asing learning toward similar structures for each
task. Heuristic search is used to find a high scor-
ingsetof structures (one for each task), where the
scorefor a set of structures is computed in a prin-
cipled way. Experiments on problems generated
from the ALARM and INSURANCE networks
show that learning the structures for related tasks
using the proposed method yields better results
than learning the structures independently.

1 Introduction

Bayes Nets [1] provide a compact, intuitive description
of the dependency structure of a domain by using a di-
rected acyclic graph to encode probabilistic dependencies
between variables. This intuitive encoding of the depen-
dency structure makes Bayes Nets appealing in expert sys-
tems where expert knowledge can be encoded through
hand-built dependency graphs. Acquiring expertise from
humans, however, is difficult and expensive, so significant
research has focused on learning Bayes Nets from data.
The learned dependency graph provides useful information
about a problem and is often used as a data analysis tool.
For example Friedman et al. used Bayes Nets learned from
gene expression level data to discover regulatory interac-
tions between genes for a species of yeast [2].

Until now, Bayes Net structure learning research has fo-
cused on learning the dependency graph for one problem
in isolation. In many situations, however, data is available
for multiple related problems. In these cases, inductive
transfer [3, 4, 5] suggests that it may be possible to learn
more accurate dependency graphs bytransferringinforma-
tion between problems. For example, suppose that we want
to learn the gene regulatory structure for a number of yeast

species. Since the regulatory structures are very similar,
learning that there is an interaction between two genes in
one species of yeast should provide evidence for the exis-
tence of the same interaction in the other species.

In this paper we present an algorithm for learning the
Bayesian Network structure for multiple problems simulta-
neously. We start with an overview of Bayes Net structure
learning for a single problem, then describe a new multi-
task structure learning algorithm in Section 3. The empir-
ical evaluation in Section 4 shows that more accurate de-
pendency graphs can be learned via inductive transfer com-
pared to learning the Bayes Net structure for each problem
in isolation.

2 Learning Bayes Nets from Data

A Bayesian NetworkB = {G, θ} that encodes the joint
probability distribution of a set ofn random variablesX =
{X1,X2, ...,Xn} is specified by a directed acyclic graph
(DAG) G and a set of conditional probability functions
parametrized byθ [1]. The Bayes Netstructure, G, en-
codes the probabilistic dependencies in the data: the pres-
ence of an edge between two variables means that there
exists a direct dependency between them. An appealing
feature of Bayes Nets is that the dependency graphG is
easy to interpret and can be used to aid understanding the
problem domain.

Given a datasetD = {x1, ..., xm} where eachxi is a com-
plete assignment of variablesX1, ...,Xn, it is possible to
learn both the structureG and the parametersθ [6, 7]. Fol-
lowing the Bayesian paradigm, the posterior probability of
the structure given the data is estimated via Bayes rule:

P (G|D) ∝ P (G)P (D|G) (1)

The priorP (G) indicates the belief before seeing any data
that the structureG is correct. If there is no reason to pre-
fer one structure over another, one should assign the same
probability to all structures. This uninformative (uniform)
prior is rarely accurate, but often is used for convenience.
If there exists a known ordering on the nodes inG such that



all the parents of a node precede it in the ordering, a prior
can be assessed by specifying the probability that each of
then(n− 1)/2 possible arcs is present in the correct struc-
ture [8]. Alternately, when there is access to a structure
believed to be close to the correct one (e.g. from an ex-
pert),P (G) can be specified by penalizing each difference
betweenG and the given structure by a constant factor [9].

The marginal likelihood,P (D|G), is computed by integrat-
ing over all possible parameter values:

P (D|G) =

∫

P (D|G, θ)P (θ|G)dθ (2)

When the local conditional probability distributions are
from the exponential family, the parametersθi are mutually
independent, we have conjugate priors for these parame-
ters, and the data is complete,P (D|G) can be computed in
closed form [7].

TreatingP (G|D) as a score, one can search for a high
scoring network using heuristic search [7]. Greedy search,
for example, starts from an initial structure, evaluates the
score of all theneighborsof that structure and moves to
the neighbor with the highest score. The search terminates
when the current structure is better than all its neighbors.
Because it is possible to get stuck in a local minima, this
procedure usually is repeated a number of times starting
from different initial structures. A common definition of
the neighborsof a structure G is the set of all the DAGs
that can be obtained by removing or reversing an existing
arc in G, or by adding an arc that is not present in G.

3 Learning from Related Tasks

In the previous section we reviewed how to learn a Bayes
Net for a single task. What if instead of a single task we
have a number of related tasks (e.g., gene expression data
for a number of related species) and we want to learn a
Bayes Net structure for each of them?

Given k data-sets,D1, ...,Dk, we want to simultaneously
learn the structures of the Bayes NetsB1 = {G1, θ1}, ...,
Bk = {Gk, θk}. We will use the termconfigurationto
refer to a set of structures(G1, ..., Gk). From Bayes rule,
the posterior probability of a configuration given the data
is:

P (G1, ..., Gk|D1, ...,Dk) ∝ (3)

∝ P (G1, ..., Gk)P (D1, ...,Dk|G1, ..., Gk)

The marginal likelihoodP (D1, ...,Dk|G1, ..., Gk) is com-
puted by integrating over all parameter values for all thek
networks:

P (D1, ...,Dk|G1, ..., Gk) =

=

∫

P (D1, ...,Dk|G1, ..., Gk, θ1, ..., θk) × (4)

P (θ1, ..., θk|G1, ..., Gk)dθ1...dθk

=

∫

P (θ1, ..., θk|G1, ..., Gk)

k
∏

p=1

P (Dp|Gp, θp)dθ1...dθk

If we make the parameters of different networks in-
dependenta priori (i.e. P (θ1, ..., θk|G1, ..., Gk) =
P (θ1|G1)...P (θk|Gk) ), the marginal likelihood is just the
product of the marginal likelihoods of each data set given
its network structure. In this case the posterior can be writ-
ten as:

P (G1, .., Gk|D1, ..,Dk) ∝ P (G1, .., Gk)

k
∏

p=1

P (Dp|Gp)

(5)

Making the parameters independenta priori is unfortunate
and contradicts the intuition that related tasks should have
related parameters, but it is needed in order to make struc-
ture learning efficient (see Section 3.3). It is important to
note that this is not a restriction on the model. Unlike the
Naive Bayes model for example, where the attribute inde-
pendence assumption actually restricts the class of mod-
els that can be learned, here the learned parameters will be
correlated if such correlation is present in the data. The
downside of making the parameters independenta priori
is that it prevents multi-task structure learning from taking
advantage of the similarities between parameters of differ-
ent tasks during structure learning phase. After the struc-
tures have been learned, however, such similarities could be
leveraged to learn more accurate parameters. Finding ways
to allow for somea priori parameter dependence while still
maintaining computational efficiency is an interesting di-
rection for future work.

3.1 The Prior

The prior knowledge of how related the different tasks
are and how similar their structures should be is encoded
in the prior P (G1, ..., Gk). If there is no reason to be-
lieve that the structures for each task should be related,
thenG1, ..., Gk should be made independenta priori (i.e.
P (G1, ..., Gk) = P (G1) · ... · P (Gk)). In this case the
structure-learning can be done independently for each task
using the corresponding data set.

At the other extreme, if the structures for all the different
tasks should be identical, the priorP (G1, ..., Gk) should
put zero probability on any configuration that contains non-
identical structures. In this case one can efficiently learn
the same structure for all tasks by creating a new data set
with attributesX1, ...,Xn, TSK, whereTSK encodes the
task the case is coming from.1 Then learn the structure for
this new data set under the restriction thatTSK is always

1This is different from pooling the data, which would mean
that not only the structures, but also the parameters for all tasks
will be identical.



the parent of all the other nodes. The common structure
for all the tasks is exactly the learned structure, with the
nodeTSK and all the arcs connected to it removed. This
approach, however, does not easily generalize to the case
where tasks have only partial overlap in their attributes.
The algorithm proposed below avoids this problem, while
computing the same solution when structures are forced to
be identical.

Between these two extremes, the prior should encourage
finding similar network structures for the tasks. The prior
can be seen as penalizing structures that deviate from each
other, so that deviation will occur only if it is supported by
enough evidence in the data.

One way to generate such a prior for two structures is to
penalize each arc(Xi,Xj) that is present in one structure
but not in the other by a constantδ ∈ [0, 1]:

P (G1, G2) = Zδ · (P (G1)P (G2))
1

1+δ

∏

(Xi,Xj)∈

G1∆G2

(1−δ) (6)

whereZδ is a normalization factor that is absorbed in the
proportionality constant of equation 5, andG1∆G2 repre-
sents the symmetric difference between the edge sets of the
two DAGs. If δ = 0 thenP (G1, G2) = P (G1)P (G2),
so the structures are learned independently. Ifδ = 1 then
P (G1, G2) =

√

P (G)P (G) = P (G) for G1 = G2 = G
and P (G1, G2) = 0 for G1 6= G2, leading to learning
identical structures for all tasks. Forδ between 0 and 1, the
higher the penalty, the higher the probability of more simi-
lar structures. The advantage of this prior is thatP (G1) and
P (G2) can be any structure priors that are appropriate for
the task at hand. If a variable,Xi, is present in one structure
but not in the other, then any arc that hasXi as one of its
extremities should not incur any penalty. A generalization
to more than two tasks is:

P (G1, ..., Gk) = Zδ,k

∏

1≤s≤k

P (Gs)
1

1+(k−1)δ ×

×
∏

1≤s<t≤k









∏

(Xi,Xj)∈

Gs∆Gt

(1 − δ)









1
k−1

(7)

The exponent1/(1+(k−1)δ) is used to transition smoothly
between the case where structures should be independent
(i.e. P (G1, ..., Gk) = (P (G1)...P (Gk))1 for δ = 0)
and the case where structures should be identical (i.e.
P (G, .., G) = (P (G)...P (G))1/k for δ = 1). The expo-
nent1/(k − 1) is used because each edge for each individ-
ual structure is involved ink − 1 terms (one for each other
structure).

This prior can be easily generalized by using different
penalties for different edges (e.g. if certain edges should

not change between tasks then the penalty on those edges
should be 1), and/or different penalties between different
tasks. There are, of course, other priors that encourage
finding similar networks for each task in different ways.
Comparisons to other such priors is a direction for future
work.

3.2 Greedy Structure Learning

Treating P (G1, ..., Gk|D1, ...,Dk) as a score, we can
search for a high scoring configuration using an heuristic
search algorithm. If we choose to use greedy search for ex-
ample, we start from an initial configuration, compute the
scores of the neighboring configurations, then move to the
configuration that has the highest score. The search ends
when no neighboring configuration has a higher score than
the current one.

One question remains: what do we mean by the neighbor-
hood of a configuration? An intuitive definition of a neigh-
bor is the configuration obtained by modifying a single arc
in a single DAG in the configuration, such that the result-
ing graph is still a DAG. With this definition, the size of the
neighborhood of a configuration isO(k ∗ n2) for k tasks
andn variables. Unfortunately, this definition creates a lot
of local minima in the search space. Consider for example
the case where there is a strong belief that the structures
should be similar (i.e. the penalty parameter of the prior,δ,
is near one resulting in a prior probability near zero when
the structures in the configuration differ). In this case it
would be difficult to take any steps in the greedy search
since modifying a single edge for a single DAG would
make it different from the other DAGs, resulting in a very
low posterior probability (score).

To correct this problem, we define the neighborhood of a
configuration to be the set of all configurations obtained by
selecting two nodes, and for each structure in the configu-
ration, adding, removing, reversing, or leaving unchanged
the arc between the two selected nodes, under the restric-
tion that the resulting structure remains a DAG. It is easy
to see that there is a path between any two configurations,
so the search space is connected. Given this definition, the
size of a neighborhood isO(n23k), which is exponential
in the number of tasks, but only quadratic in the number
of nodes.2 In the case where all the learned structures are
required to be identical (infinite penalty for diverging struc-
tures) multi-task learning, with this definition of neighbor-
hood, will find the same structures as the specialized algo-
rithm described in Section 3.1.

2The restriction that changes, if any, have to occur between
the same nodes in all the structures could be dropped, but this
would lead to a neighborhood that is exponential in bothn andk.
Considering the assumption that the structures should be similar,
such a restriction is not inappropriate.



3.3 Searching for the Best Configuration

At each iteration, the greedy procedure described in the
previous section must find the best scoring configuration
from a setN of configurations. In the naive approach the
score of every configuration inN is computed and the con-
figuration with the highest score is selected. Since the size
of N can get large for largen or k, this naive approach
can be expensive. Under the following assumptions, how-
ever, it is possible to evaluate only a fraction of the scores
in order to find the highest one: 1) the parameters for each
task are mutually independenta priori so the score of a
configuration has the form in equation 5; 2) the prior over
configurations has the form in equation 7.

Let a partial configuration of orderl, Cl = (G1, .., Gl),
be a configuration where only the structures for the firstl
tasks are specified and the rest ofk − l structures are not
specified. We say that a configurationC matches a partial
configurationCl if the structures for the firstl tasks inC are
the same as the structures inCl. Let the score of a partial
configuration be:

SN (Cl) = Zδ,k

∏

1≤s<t≤l









∏

(Xi,Xj)∈

Gs∆Gt

(1 − δ)









1
k−1

× (8)

×
∏

1≤p≤l

P (Gp)
1

1+(k−1)δ P (Dp|Gp)
∏

l+1≤p≤k

Bestq

whereBestq = max{P (Gq)
1

1+(k−1)δ P (Dq|Gq)}. It is
easy to see that the score of a partial configuration is an
upper bound on the score of any configuration that matches
it.3 When searching for the best scoring structure inN , we
do not explore any configuration matching a partial config-
uration with lower score than the current best configuration.
This significantly reduces the number of partial configura-
tions (and consequently complete configurations) that need
to be explored. In our experiments, using this pruning, we
only need to evaluate 2-4% of the partial configurations,
resulting in computational savings of 96-98%.

Another source of computational savings is the precom-
putation of the individual marginal likelihoods. With the
definition of a neighborhood we are using, a neighboring
configuration will have, in each of the k components, one
of the2n2 or fewer individual DAGs that differ by exactly
one edge from the current DAG in the respective compo-
nent. Each of these2n2 (or fewer) DAGs are present in
about3k−1 neighboring configurations. Since a configura-
tion score has the form in equation 5, the marginal likeli-
hoods for the individual DAGs,P (Di|Gi), can be reused,
thus reducing by a factor of about3k−1 the expense of com-
puting the marginal likelihoods of the neighboring config-
urations.In our experiments, precomputing all the marginal

3It is possible to get a tighter upper bound, but we will use this
one for simplicity.

likelihoods, which is required whether we do multi-task or
single-task learning, took 3 - 7 times longer than finding the
best neighboring configuration.4 It is also worth mention-
ing that both the prior and the likelihood are decomposable,
so evaluating the score of the neighboring configurations
requires only local computations.

4 Experimental Results

We evaluate the performance of multi-task structure learn-
ing using the ALARM [10] and INSURANCE [11] Bayes
Nets. For each problem, we create five related tasks by
starting with the original network and deleting arcs with
probability Pdel. The structures of the five tasks can be
made more or less similar by varyingPdel (For Pdel = 0
all structures are identical). We create four sets of related
tasks. For two of them, ALARM and INSURANCE, we
start with the parameters of the original networks for all five
tasks. When an arc is deleted, the parameters of the net-
work are recomputed by integrating over the deleted parent,
so that the dependency between the child and the remain-
ing parents is unchanged. This yields five related tasks with
correlated parameters. For the other two sets, ALARM-
IND and INSURANCE-IND, we start with random param-
eters for each task instead of the original ones, and apply
the same procedure as above when an arc is deleted. This
way we create five tasks with similar structures but inde-
pendent parameters.

We also experiment with a qualitatively different way of
generating related tasks, ALARM-COMP. We split the
ALARM network in 4 components: nodes 1-7 in the first
component, nodes 9-14, 21 and 34 in the second, nodes
8,27-31, 36 and 37 in the third and the rest in the fourth
component. For each of the five tasks, we randomly change
the structure and parameters of one or two of the compo-
nents, while keeping the rest of the Bayes net (including
parameters) unchanged. This way parts of the structures
are shared between tasks while other parts are completely
unrelated (see Figure 7).

All reported results are averages over ten trials. For each
trial, in addition to varying the train and test sets, we also
construct different target Bayes Nets. This way we show
the expected performance over the entire class of problems
that can be constructed using the methods above.

The goal is to recover as closely as possible the structure
of all five Bayes Nets. We measure performance both in
terms of average edit distance5 between the true structures
and learned structures, and in terms of average empirical
KL-divergence (computed on a large test set) between the
distributions encoded by the true networks and the learned

4The implementation we used for these results did not use AD-
trees. Using AD-trees would significantly reduce the time to pre-
compute the marginal likelihoods.

5Edit distance measures how many edits (arc additions, dele-
tions or reversals) are needed to get from one structure to the other.
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Figure 1: Reduction in edit distance (left) and KL-Divergence (right) for ALARM-IND
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Figure 2: Reduction in edit distance (left) and KL-Divergence (right) for INSURANCE-IND
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Figure 3: Reduction in edit distance (left) and KL-Divergence (right) for INSURANCE

ones. We compare multi-task structure learning (MTL) to
single-task structure learning (STL) and learning identical
structures for all tasks via the algorithm presented in Sec-
tion 3.1 (IDENTICAL). Single-task structure learning uses
greedy hill-climbing with tabu lists to learn the structureof
each task independently of the others.6 The greedy search
is initialized with the empty structure. Multi-task structure
learning uses the greedy algorithm described in Section 3.2
with the prior over configurations from equation 7, and un-
informative prior on the individual structures. The greedy

6Learning identical structures and single-task structure learn-
ing can be viewed as learning an augmented naive Bayesian
network and a Bayesian multi-net [12] respectively, where the
“class” of each example is the task it belongs to . Unlike in the
usual setting, however, here we are not interested in predicting
to which task an example belongs to. We are only interested in
recovering accurate network structures for each task.

MTL search is initialized with the solution found by single-
task learning.7 For all methods, after learning the struc-
tures, the Bayes net parameters are learned using Bayesian
updating (see e.g. [6])

Figures 1 - 3 show the average percent reduction in loss,
in terms of edit distance and KL-divergence, achieved by
multi-task learning (MTL) over single-task learning (STL)
for a training set of 1000 points on the ALARM-IND,
INSURANCE-IND and INSURANCE problems. (The
graphs for the ALARM problem look similar, and are not
included due to space constraints.) On the x-axis we vary
the penalty parameter of the prior on a log-scale.8 The

7Initializing MTL search with the STL solution does not pro-
vide an advantage to MTL, but makes the search more efficient.

8The log-scale is needed because we are working in the prob-
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Figure 4: Edit distance (left) and KL-Div (right) for STL, learning identical structures and MTL

higher the penalty, the more similar the learned structures
will be, with all the structures being identical for a penalty
of one (left end of graphs). Each line in the figure corre-
sponds to a particular value ofPdel.

The trends in the graphs are exactly as expected. For all
values ofPdel, as the penalty increases, the performance
increases because the learning algorithm takes into account
information from the other tasks when deciding whether to
add a new arc or not. If the penalty is too high, however, the
algorithm loses the ability to find true differences between
tasks and the performance drops. As the tasks become
more similar (lower values ofPdel), the best performance is
obtained at higher penalties. Also as the tasks become more
similar, more information can be extracted from the related
tasks, so usually multi-task learning provides more bene-
fit. As expected, multi-task structure learning provides a
larger improvement in edit distance than in KL-divergence.
This happens because multi-task structure learning helps
to correctly identify the arcs that encode weaker depen-
dencies (or independences) which have a smaller effect on
KL-divergence. The edges that encode strong dependen-
cies that have the biggest effect on KL-divergence can be
easily learned without help from the other tasks. Multi-task
learning provides similar benefits whether the tasks have
highly correlated parameters (ALARM and INSURANCE
problems) or independent parameters (ALARM-IND and
INSURANCE-IND problems). This shows that making the
parameters independenta priori (see Section 3) does not
hurt the performance of multi-task learning. However, if
we were able to take advantage of the similarity between
the parameters of the different tasks, we could presumably
improve performance even further. It is an open question
how to relax thea priori parameter independence require-
ment while still maintaining computational efficiency.

When applying multi-task structure learning to a real prob-
lem, a good value for the penalty parameter of the prior
is not usually knowna priori. Here we take a simple ap-
proach to finding it: we learn Bayes Nets for a number of
different values of the penalty parameter and pick the net-
works corresponding to the penalty parameter that gives the
highest average log likelihood on a small independent val-

ability space so1− δ needs to change by orders of magnitude for
the effects to be noticeable.

idation set. We then relearn only the parameters of these
Bayes Nets using both the training and the validation set.
More involved approaches for setting the penalty parame-
ter are possible and might yield even better performance.
Figure 4 shows the edit distance and KL-Divergence per-
formance for single task learning (STL), learning identical
networks via the algorithm presented in Section 3.1, and
multi-task learning (MTL) for the five problems (Pdel is set
to 0.05 for ALARM-IND, ALARM, INSURANCE-IND
and INSURANCE). The training set has 1000 cases, with
a validation set of 50 cases for selecting the penalty pa-
rameter for MTL. Single-task learning and identical struc-
ture learning use both the training and the validation sets
to learn both the structure and the parameters of the Bayes
Nets. The figure shows that multi-task learning yields a
6%-21% reduction in KL-divergence and a 11% - 52% re-
duction in edit distance when compared to learning identi-
cal structures for all tasks. All differences except for edit
distance on ALARM-IND and INSURANCE problems are
.95 significant according to paired T-tests. When compared
to single-task learning multi-task learning reduces the KL-
divergence 6% - 26% and the number of incorrect arcs in
the learned structures by 20% - 57%. All differences are
.95 significant. Since the five tasks for the ALARM, IN-
SURANCE, and ALARM-COMP problems share a large
number of their parameters, simply pooling the data might
work well. However, this is not the case. Except for the
ALARM problem, where it achieves about the same edit
distance as learning identical structures (18.6), poolingthe
data has much worse performance both in terms of edit dis-
tance and in terms of KL-divergence.

Figure 5 shows the performance of single and multi-task
learning as the train set size varies from 500 to 8000 cases
(MTL uses 5% of the training points as a validation set
to select the penalty parameter). On average MTL needs
a quarter as much data as STL to achieve the same edit
distance. As discussed before, the improvement in KL-
divergence is smaller and represents about a 20% savings in
sample size. As expected, the benefit from MTL decreases
with increasing sample size.

Figure 6 shows the edit distance and KL-divergence for one
task of the ALARM problem as the number of related tasks
varies from zero (single task learning) to ten. With more re-
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Figure 5: Edit distance (left) and KL-Divergence (right) vs. train set size for ALARM-COMP.
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Figure 6: Edit distance (left) and KL-Divergence (right) vs. number of tasks related tasks for ALARM.

lated tasks, there is more information that multi-task learn-
ing can exploit and the performance increases. Once there
are enough tasks (three for this problem), there is little ben-
efit to having more, and the performance plateaus.

For a qualitative perspective, Figure 7 shows the true struc-
tures and the structures learned by MTL and STL for the
five tasks (one per column) on one trial of the ALARM-
COMP problem. The figure clearly shows that multi-task
learning finds more accurate structures by taking advantage
of the similarity between the five tasks, while still preserv-
ing some of the true differences between them.

5 Discussion and Related Work

We believe this is the first multi-task Bayesian Network
structure learning algorithm. The work most closely re-
lated to ours is Baxter’s [4] which provides a Bayesian in-
terpretation of multi-task learning. Other work in multi-
task learning includes [3, 5, 13, 14]. For an overview of
learning Bayes Nets from data see [6, 7, 15, 16].

In this paper, we use heuristic search in the space of
network structures. Some straightforward extensions are
greedy search in the space of equivalence classes [17], ob-
taining confidence measures on the structural features of
the configurations via bootstrap analysis [18], and structure
learning from incomplete datasets via the structural EM al-
gorithm [19]. Other extensions such as obtaining a sample
from the posterior distribution via MCMC methods might
be more problematic. Because of the larger search space,
MCMC methods might not converge in reasonable time.
Evaluating different MCMC schemes is a direction for fu-

ture work. Another open question is whether we can relax
the requirement that the parameters of the Bayes Nets for
the different related tasks are independenta priori. Re-
laxing this requirement might further improve the perfor-
mance of multi-task learning since the task would be able
to share not only the structures but also the parameters, thus
having more opportunities for inductive transfer.

6 Conclusions

We present a method for learning the Bayes Net structures
of related tasks. The approach assumes that the structures
of related tasks are similar: the presence or absence of arcs
in some of the structures provides evidence for the pres-
ence or absence of those same arcs in the other structures.
When this assumption is true, learning the structures to-
gether yields an advantage over learning a structure for
each task individually. Similarity between learned struc-
tures is controlled via a prior. Experiments with perturbed
ALARM and INSURANCE networks show that learning
related structures simultaneously yields a reduction in KL-
Divergence of 6% - 26% and reduces the number of in-
correct arcs in the learned structures by 20% - 57% when
compared to structures learned separately.
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Figure 7: The true structures and structures learned by MTL and STL for ALARM-COMP
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