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Abstract

This paper addresses the problem of fine-grained recog-
nition in which local, mid-level features are used for clas-
sification. We propose to use the Multi-Kernel Learning
framework to learn the relative importance of the features
and to select optimal features with regards to the clas-
sification performance, in a principled way. Our results
show improved classification results on common bench-
marks for fine-grained classification, as compared to the
best prior state-of-the-art methods. The proposed learning-
based combination method also improves the concatenation
combination approach which has been the standard prac-
tice in combining features so far.

1. Introduction

Fine-grained classification [10, 21, 2] focuses on recog-
nition of sub-categories of a base-level category, e.g. recog-
nition of bird species [2] or flower species [16] or dog
species [12]. The main challenges of this problem domain
are the fine-differences between closely related categories
that are categorized as different classes.

A number of approaches have been proposed for fine-
grained recognition [24, 22, 16, 17, 3, 4, 2, 20], but only few
of them have focused on explicitly making fine distinctions
between similar classes [24]. At the same time, identifying
fine differences is crucial in fine-grained recognition, since
objects of different classes can look very similar at first
glance and may only differ in very small local regions (Fig-
ure 1). Prior work has utilized local patches for fine-grained
classification [22, 24], but such features are selected in ad
hoc way, or may not necessarily be optimal with regards to
the final classification performance [22]. Other works have
focused entirely on manually labeled body parts [24, 10].
Additionally, a common practice in feature combination has
been to simply concatenate feature representations coming
from semantically different features [15, 22]. Our approach
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addresses both problems by learning the features corre-
sponding to appropriate local regions, and learning their
mutual combination with regards to the classification task
at hand. Furthermore, our approach does not require any
manual tagging, which is tedious and expensive.

In this paper we address the question: can we refine the
feature selection process, so that the features’ weights are
optimal with respect to the classification performance? We
formulate the feature selection process in a Multi-Kernel
Learning (MKL) [13] framework. Our framework allows to
determine the features’ relative importance in a principled
way and allows for working with arbitrarily large number
of features. Figure 2 shows a schematic of the approach
in which we both learn candidate local regions in which
the algorithm can focus to identify fine details, as in [22],
and learn the optimal combination of feature representa-
tions which best solves the task at hand, i.e. by optimiz-
ing directly the classification accuracy of the overall task.
We refer to our approach as feature combination learning
(or feature combination), because we learn the combination
of features with regards to improving the classification per-
formance. Our proposed approach is designed to obtain the
optimal combination of features for the final classification
task. Additionally, the approach allows for selection of the
most important features to decrease computational time, for
the cases in which the number of features is too large.

Our main contribution is to propose a unifying frame-
work that can extract and learn features which are respon-
sible for fine-grained differences and to learn their com-
bination in an optimal way. Feature combinations based
on Multi-Kernel Learning has had various applications, but
ours is the first one to show its benefits for making locally
fine distinctions, which is the most challenging problem in
this domain.

We tested our approach on two commonly used publicly
available large-scale datasets: the Caltech-UCSD 200 Birds
dataset [21], and the Stanford 120 Dogs dataset [12]. Our
approach accomplishes competitive results for fine-grained
classification, improving on the state-of-the-art results on
these datasets. Our approach is general but at the same time



Figure 1. Recognizing a Pine Warbler (left) from a Yellow Vireo (right), which are quite similar. To discriminate between different species
within the same top level category, e.g. birds, we need to focus on the fine details that are present in local regions. This problem is
challenging because the recognition system must identify appropriate local regions which are of most discrimination benefit, as well as,
computationally combine all the information extracted from each local region, to take the best possible decision. Our paper addresses both
problems in a unified framework, without the need for manual annotation of parts.

outperforms a range of methods, varying from segmenta-
tion [3, 4], to random forests [23], and including two meth-
ods whose ideas have been incorporated in our framework,
namely, feature-based selection by template matching [22]
and Multi-Kernel Learning [21].

2. Previous work

A variety of fine-grained categorization approaches have
been proposed. Yao et al [23] use a random forest for
recognition, whereas Farrell et al. [10] propose 3D prim-
itives called ‘birdlets’, which correspond to bird parts.
Other methods improve recognition for fine-grained cat-
egorization through segmentation, e.g. [1, 17] or co-
segmentation [3, 4]. Some previous works have used fully,
manually annotated data or human-in-the-loop [2, 20, 9]
to extract features that are useful for categorization. Our
approach is on automatically learning and selecting these
features with a view towards really large scale fine-grained
recognition problems where manual labelling is prohibitive.

Recent work on pose-normalized pooling [24] and tem-
plate matching [22] are the most relevant to our work. Pose-
normalized pooling [24]finds alignment between common
parts across different sub-categories by using manual tag-
ging of fiducial body parts. The main differentiator to [24]
is that here, both the spatial feature alignment and the fea-
ture selection are done fully automatically and we do not
use manual supervision for identifying body parts, which
can be tedious and expensive. Our work builds on the idea
to extract local features without manual supervision of Yang
et al. [22], who proposed computing a dictionary of ‘tem-
plates’ shared across all classes. This approach however
suffers from two major limitations, which our method ad-
dresses: Firstly, the features are selected to represent the
image data well and not necessarily to discriminate between
classes. Secondly, the features computed from the selected

dictionary are concatenated together to form a new feature
representation, which, as seen in the results, is suboptimal.

Multi-kernel learning [7, 6] approaches have proposed to
combine different feature representations, or kernels. They
have been successfully applied to computer vision prob-
lems [11, 19]. Branson et al [2] applied MKL in the context
of fine-grained recognition. More specifically, they applied
the MKL algorithm of [19] for a better recognition of birds
species using human-in-the loop input. The work of Kumar
et al [13] has recently demonstrated that kernel combina-
tion for MKL can be re-formulated as a linear classification
problem, which allows for handling large number of kernels
and can potentially scale up to very large datasets.

3. MKL for feature combination

This section describes how to utilize mid-level features
for better classification, by learning their relative impor-
tance. We suggest a simpler version for the template dic-
tionary learning method of Yang et al [22] by relaxing some
of the constraints. This is described in Section 3.1. These
dictionaries can be extracted per arbitrary group of classes,
or for all classes together in a global dictionary. One key
issue to note here is that, although adding these features in
the classification is no doubt useful [22], the features are
learned with only ‘reconstructive’ purposes, i.e. selected
to fit the available data well and not with regards to the fi-
nal classification goal in mind. For example, one selected
feature may be common, but only encountered in the back-
ground, e.g. a tree branch (see Figure 2). Such a feature
may be present in many classes which will make it a good
feature, according to the criterion used in [22]. Neverthe-
less, it will not be a good feature to use in the final classi-
fication and thus its relative importance to the classification
of birds should be very small, or almost 0. This is why,
we propose here to learn the relative weights of the selected
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Figure 2. Our paper proposes to learn the optimal combination of
visual features (and their representations w1, wa, . . ., etc.), with
regards to the final classification performance. For example, al-
though all features above may be common in birds’ images, the
left-most two features (of a bird’s head or wing) are much more
important for fine-grained classification than the right-most two
features (possibly of background). We here learn the relative im-
portance of their feature representations w; by learning the opti-
mal weight combinations C1, Cs, . . ., etc.

features (Sections 3.2 and 3.3). In Section 3.2, we first show
that weighted concatenation of features can be expressed as
a linear combination of kernels, which is precisely the MKL
formulation. Section 3.3 describes the details of the binary
formulation of MKL, proposed by Kumar et al. [13], which
we chose here because of its scalability.

3.1. Unsupervised feature learning

The template matching algorithm, of Yang et al. [22]
extracts features that can be shared across classes in un-
supervised fashion. Since the ‘templates’ focus on fine-
details and are selected in unsupervised manner, we believe
they are well suited to the task at hand. We made a few
modifications to the algorithm, as described below. The
algorithm proceeds by learning a set of regions, or mid-
level features (also called templates in [22]) T3, ... Tk that
are common across classes. Introducing auxiliary variables
vl,i =1... K as indicator variables for each found region
in an image / and I/,i = 1... K as locations where the re-
gions are found, we maximize the following cost function:

max Ly (T,v,])
Z{

max — Ly(T,v,1)}. (1)

As seen, the cost function is composed of two terms. The
first one measures how well the templates of the dictionary
approximate local neighbourhoods in the images

K
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where R(I,1!) denotes the region of image I at location ;.
The second term enforces selection of ‘diverse’ templates,
i.e. penalizes selection of templates that are too close:
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where d(I],1]) is the location penalty: d(I],15) = oo if
[[(if —1f]] < X and 0, otherwise. In this work, we relaxed
the constraints on features’ locations, allowing features to
be found anywhere in the image. We also did not use the
co-occurrence criterion of [22]. Additionally, we used a
simpler (and also potentially faster representation) based on
global pooling of features within the template region. Sec-
tion 4 has details on the feature representation.

Figures 3 and 4 show examples of learned features for
the birds and dogs datasets, respectively. As seen, the
method is useful in extracting common features, e.g. a dog’s
head, but at the same time, some features may be contami-
nated, e.g. contain a mix of different patterns.

3.2. Feature combination formulation

We here learn the weights of individual blocks of fea-
tures, each block feature representation corresponding to
one mid-level feature. As shown in Figure 2, some mid-
level features may be more useful than others, so conceiv-
ably the weight of the specific feature representation should
depend on the usefulness of the feature for classification.

Let us assume that we have K mid-level features each
one described by a feature vector: wy,wa,... wk. When
concatenating these features we form the new feature rep-
resentations F.oncat Which simply concatenates all the fea-
tures.

.WK) “)

We note that this type of feature combination is extremely
common in the literature [15, 22], where often very diverse
set of features are being concatenated.

Instead, our goal here is to consider combination of fea-
tures, or weighted concatenation, which is of the form:

Fconcat = (Wla Ww2,..

Foomb = (Ciwy, Cowa, ... CxwWk), &)

where the coefficients C, Cs, ...Ck are to be learned. Our
approach is to select these coefficients in such a way, so that
they minimize the expected classification loss. This goal is
aligned with the final performance of the system.

As the new feature representation in Equation 5 is
going to be used in SVM multi-class framework, we here
prove that we can view the same problem as an SVM
learning task with additive kernels. More specifically, let
F! = (uy,us,...uk) and F2 = (v, va,... vK) are two
different feature representations made from concatenating
the feature representations of K different features. Suppose
we form the reweighted version by applying fixed weights
to each feature block: FL . = (ciu1,cous,...cxuk)
and F2 . = (c1v1,cova,...cxvk). To form a dot
product between those features, we obtain:

F2
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(c1u1,coug,. .. cxuk).(c1V1, CaVa, ... CKCK) =
2 2 2 _
cfu1Vvy + caugva + ... + CEL UK VK =

Zfil 2o (ui, vi).
That is, the dot product of concatenated features can be rep-
resented as linear combination of kernels, in our case these
are linear kernels, i.e. ®(u,v) = u.v. Thus, we can see that
we can represent the combination of features from Equa-
tion 5 as weighted sum of kernels, the latter being the MKL
framework [11] formulation. In this work we propose to use
the above-mentioned property to learn the unknown coeffi-
cients C; (here C; = ¢?).

In Section 3.3 we will further reduce the additive kernel
Multi-Kernel Learning task to a Binary classification Multi-
Kernel Learning [14] in which the coefficients C; of our
task can be optimized by increasing the final classification
performance.

3.3. Binary classification formulation for MKL

In the previous section we have shown that it is possi-
ble to adapt the weights of each feature block by convert-
ing the problem to a Multi-Kernel Learning one. We also
showed that for linear kernels it is equivalent to the very
popular concatenation, but, unlike previous works, here we
propose learnable weights for each block. In this section,
we further reduce the problem to the binary classification
formulation of Multi-Kernel Learning of Kumar et al [14],
in order to learn the features’ weights. This is done so that
the features’ relative importance is learned when optimiz-
ing the classification performance, rather than other criteria,
e.g. minimizing a reconstruction error by approximating the
visual appearance of patches that belong to a set of classes,
as previously done in [22].

Suppose now we want to optimize Zle Ci®;(u,v),
where ®;(u,v) = ®(u;,v;) = u;.v; is the projection of the
full concatenated feature vector onto the i‘" feature block.
That is, we can view each feature block as individual kernel
and we would like to learn the weight C; in the kernel com-
bination. Kumar et al. transform this problem to a binary
classification problem [14]. Similarly, here, for each pair of
examples F' = Foomp, G = Geomp We form a new example
with representation Z ¢ and label yr g:

ZF,G = ((I)l(F’ G)a q)Q(Fa G)7 ceey q)K(Fv G))a

yr.c = 1 if F,G belong to the same class, 0 otherwise.
In other words, Zp ¢ = (F1G1, F2Ga, ..., FxGg), where
F; and G, are the corresponding representations on the 7"
feature block. We aim to learn the weights of the new SVM
classification problem, which will be exactly the weights C;
in our original problem.

Clearly, the abovementioned criterion is specifically tar-

geting to optimize for examples of the same class to have

similar representations, and examples of different classes to
have diverging ones. After the optimization is done, we can
revert the problem to the original problem in Equation 5
where the learned weights are being used in the combined
representation Feomp-

We note that while our MKL formulation allows for non-
linear kernels to be used, for computational purposes lin-
ear kernels may be preferred. Furthermore, we can use this
framework to do a feature selection, as well. If the kernel
learning is performed using an L1 regularization rather than
an L2, the learned kernel weights will be sparse and many
features will be eliminated. In this way, we can select the
top features and save time by computing much fewer fea-
tures. This is also important for scalability, e.g. if for really
rich datasets, several features are extracted, it may take a
long time to compute them at detection time. We mention
this as a practical consideration only and note that we did
not need to prune our features since the available datasets
are still not sufficiently large.

4. Implementation details

This section describes the implementation details. Our
basic feature representation is based on HOG features [8]
which are computed at several resolutions to allow for small
scale invariance. We further use the locally-constrained
coding method to compute the representation of each HOG
feature into an 8192-large dictionary as in [15]. This ba-
sic representation is combined with a spatial pooling in the
whole image or within the boundaries of each feature. For
each feature, a global max pooling is done. Each pooling
response is treated as individual feature. In our feature com-
bination, we combined the representations (global pooling)
of individual mid-level features learned as in Section 3.1,
as well as global representation for the whole image. We
used the Libsvm [5] implementation of SVM as it allows
working with direct kernels. We tuned the regularization
parameter of the SVM by using a five fold cross-validation.

In our experiments, all images are resized to 500 pixels at
the larger side. When learning the regions for region pool-
ing, we followed the recommendations of [22] and selected
image patches which were approximately 1/3 of the image
size. Since we worked with fixed 32x32 size patches all im-
ages are resized to be of size approximately 100x100. Note
that this is done only to find the matching regions for the
purposes of speed-up; the final pooling is done in the orig-
inal image. All individual feature representations are L2
normalized prior to being combined, which is a fairly stan-
dard practice. This is done in both the cases when MKL is
done and when feature concatenation is performed for base-
line comparisons. For learning the feature combinations, we
use the optimization package PEGASOS of Shalev-Shwartz
et al. [18]. There, again, a cross-validation on a small subset
of the training data is done.



Figure 3. Patches that belong to two mid-level features, learned
from the birds dataset, e.g. of birds’ beaks and tails.
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Figure 4. Patches that belong to features, learned for dogs. These
example features contain parts of dogs’ heads and feet.

5. Experimental results

We tested our algorithm on benchmark datasets which
are commonly used for evaluating novel fine-grained clas-
sification algorithms: Caltech-UCSD 200 Birds [21] and
Stanford 120 Dogs [12] datasets. We use the standard ex-
perimental setups established in prior works that have intro-
duced these datasets [12, 21] and by other prior works that
have reported results on these benchmarks. More specifi-
cally, we report the mean accuracy of classification, which
has been the standard metric for fine-grained classification
domain so far [2, 3, 4, 17, 22]. For both datasets we used
the bounding box information provided. This choice is also
made because previously published results in the literature
report their results in these settings and we can compare in
those same settings. We also note that we did not com-
pare to experimental results that involve a human-in-the-
loop since they utilize additional information [10, 20, 9],
and the results would not be comparable.

5.1. Caltech/UCSD 200 Birds dataset

The Caltech-UCSD 200 Birds dataset [21] contains 200
different bird species and consists of 6,033 images and is
one of the first benchmarks for fine-grained recognition. Al-
though manual annotations of objects’ parts and attributes
are available, they are not used in our experiments.

Table 1 summarizes the results of our feature combina-
tion method. Compared to the prior state-of-the-art meth-
ods, we can see that our method provides an improvement,
and outperforms the best known method so far. Our method

Method Accuracy (in%) |

Baseline concatenation 14.5
Welinder et al [21] 19.0
Yao et al [23] 19.2
Chai et al [3] 23.3
Deng et al [9] 26.5
Chai et al [4] 26.7
Yang et al [22] 28.2
Angelova et al [1] 30.1
Feature combination (Ours) 30.5

Table 1. Classification accuracy on the Caltech/UCSD 200 Birds
dataset.

| Method | Accuracy (in%) |
Baseline concatenation 24.7
Khosla et al [12] 22.0
Chai et al [4] 26.0
Yang et al [22] 36.9
Yang et al [22] 38.0
Feature combination (Ours) 39.5

Table 2. Classification accuracy on the Stanford 120 Dogs dataset.

achieves 30.5% mean average precision. We note here that
two of the approaches we compared to in Table 1, namely,
the Multi-Kernel Learning approach [21] and the feature-
based learning [22], test methods that are similar to the ones
we utilize in our framework. Our method outperforms both,
which is a very satisfying result.

We compare our method to a baseline algorithm that
applies concatenation of features, since this is the most
common scenario in prior work. As we can see for fine-
grained recognition, where mid-level features are used, the
improvement of our feature learning method is quite con-
siderable: 30.5% vs 14.5% for the baseline which concate-
nates the features without the flexibility of learning weights.
The improvement is due to our feature learning method,
since this is the only difference between the two approaches.
We also note that recent methods have obtained better re-
sults with a human-in-the-loop (32.8%) [9], but these results
are not comparable since they used additional information.
Their comparable results with no manual supervision are
26.5% [9].

5.2. Stanford 120 Dogs dataset

The Stanford 120 Dogs dataset [12] contains 120 differ-
ent species of dogs and consists of 20,580 images. This is
one of the largest fine-grained classification datasets as of
this writing.

Table 2 summarizes the results of our feature combina-
tion method for the 120 dogs dataset. Our method achieves
39.5% mean average precision compared to 38.0% (36.9%),



26.0% and 22.0% of prior methods. We note that the top
competing result of Yang et al [22] 38.0% was obtained
when the authors included additional features, based on
shape contours. Since our method uses only features cor-
responding to rectangular patches in the image, we would
expect an improved performance of our method with ex-
tra shape features. We further compared our results to our
baseline method, which does not learn weights. Here the
improvement of our feature learning method is also very
large: 39.5% vs 24.7% for the baseline.

Discussion. As seen from our results, although the base-
line method still allows the SVM to optimize all weights
globally and in principle should be able to learn the weights
well, this does not happen in practice and the baseline clas-
sification rates are rather low. We also note here, that the
problem of properly concatenating and normalizing features
has been known in the machine learning community, with
various normalization methods proposed. Here, we believe
the problem is exacerbated by the fact that the mid-level vi-
sual features extracted for these specific fine-grained classi-
fication problems, and their corresponding representations,
may be very sparse and exhibit very strong responses.

6. Conclusions and future work

We presented an approach which learns the feature com-
bination of mid-level features in a principled way using the
Multi-Kernel Learning framework of [14]. We showed that
it is beneficial to learn the weights, and more specifically to
learn them so that the final classification performance is im-
proved. Our approach significantly outperforms its counter-
part baseline that does not use learned weights and is com-
petitive to the state-of-the-art methods.

This approach is not specific to the super-category at
hand and can be applied to other categories as well, so it
will be interesting to see how it compares on man-made
categories, such as cars, or airplanes. Another interesting
direction is to explore whether MKL can be combined with
human-in-the loop approaches, e.g. [20].
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paper.
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