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Abstract

We investigate four previously unexplored aspects of en-
semble selection, a procedure for building ensembles of
classifiers. First we test whether adjusting model predic-
tions to put them on a canonical scale makes the ensembles
more effective. Second, we explore the performance of en-
semble selection when different amounts of data are avail-
able for ensemble hillclimbing. Third, we quantify the ben-
efit of ensemble selection’s ability to optimize to arbitrary
metrics. Fourth, we study the performance impact of prun-
ing the number of models available for ensemble selection.
Based on our results we present improved ensemble selec-
tion methods that double the benefit of the original method.

1 Introduction

An ensemble is a collection of classifiers whose predic-
tions are combined with the goal of achieving better perfor-
mance than the constituent classifiers. A large body of re-
search now exists showing that ensemble learning often in-
creases performance (e.g. bagging [3], boosting [21], stack-
ing [25]).

Recently, ensemble selection [7] was proposed as a
technique for building ensembles from large collections of
diverse classifiers. Ensemble selection employs greedy for-
ward selection to select models to add to the ensemble, a
method categorized in the literature as overproduce and
choose [20]. Compared to previous work, ensemble selec-
tion uses many more classifiers, allows optimizing to ar-
bitrary performance metrics, and includes refinements to
prevent overfitting to the ensemble’s training data—a larger
problem when selecting from more classifiers.

In this paper we analyze four previously unexplored as-
pects of ensemble selection. First, we evaluate ensemble
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selection’s performance when all the models are calibrated
to place their predictions on a canonical scale. Making
calibrated models available to ensemble selection provides
significant improvement on probability measures such as
squared error and cross-entropy. It appears, however, that
calibration does not make ensemble selection itself more
effective; most of the benefit results from improvements in
the base-level models and not from better ensemble build-
ing.

Second, we explore how ensemble selection behaves
with varying amounts of training data available for the crit-
ical forward selection step. Despite previous refinements
to avoid overfitting the data used for ensemble hillclimb-
ing [7], our experiments show that ensemble selection is
still prone to overfitting when the hillclimb set is small.
This is especially true if their model bagging procedure is
not used. Surprisingly, although ensemble selection over-
fits with small data, reliably picking a single good model
is even harder—making ensemble selection more valuable.
With enough hillclimbing data (around 5k points), overfit-
ting becomes negligible. Motivated by these results, we
present a method for embedding cross-validation inside en-
semble selection to maximize the amount of hillclimbing
data.1 Cross-validation boosts the performance of ensemble
selection, doubling its previously reported benefit. While
adding cross-validation to ensemble selection is computa-
tionally expensive, it is valuable for domains that require
the best possible performance, and for domains in which
labeled data is scarce.

Ensemble selection’s ability to optimize to any perfor-
mance metric is an attractive capability of the method that
is particularly useful in domains which use non-traditional
performance measures such as natural language process-
ing [14]. Because of this, the third aspect we investigate
is what benefit, if any, comes from being able to opti-
mize to any metric. Our experiments reinforce the intuition
that it is best to optimize to the target performance metric;

1This is different from wrapping cross-validation around ensemble se-
lection, which would not increase the data available for hillclimbing.



however, they also show that minimizing squared error or
cross-entropy frequently yields ensembles with competitive
performance—seemingly regardless of the metric.

Fourth, we test ensemble selection’s performance when
only the best X% models are available for selection. These
experiments confirm our intuition that the potential for over-
fitting increases with more models. Using only the top 10-
20% of the models yields performance better than or equiv-
alent to ensemble selection without this model pruning.

2 Background

In this section we briefly review the ensemble selection
procedure first proposed by Caruana et al. [7]. Ensemble se-
lection is an overproduce and select ensemble method car-
ried to an extreme where thousands of models are trained
using many different learning methods, and overfitting is
moderated by applying several techniques.

In ensemble selection, models are trained using as many
learning methods and control parameters as can be applied
to the problem. Little or no attempt is made to optimize
the performance of the individual models; all models, no
matter what their performance, are added to the model li-
brary for the problem. The expectation is that some of the
models will yield good performance on the problem, either
in isolation or in combination with other models, for any
reasonable performance metric.

Once the model library is collected, an ensemble is built
by selecting from the library the subset of models that
yield the best performance on the target optimization met-
ric. Models are selected for inclusion in the ensemble using
greedy forward stepwise model selection. The performance
of adding a potential model to the ensemble is estimated us-
ing a hillclimbing set containing data not used to train the
models. At each step ensemble selection adds to the ensem-
ble the model in the library that maximizes the performance
of the ensemble to this held-aside hillclimbing data.

When there are thousands of models to select from, the
chances of overfitting increase dramatically. Caruana et al.
describe two methods to combat overfitting. The first con-
trols how ensembles are initialized. The second performs
model bagging—analogous to feature bagging [1, 5]—to re-
duce the variance of the selection process.

Ensemble Initialization: Instead of starting with an
empty ensemble, Caruana et al. suggest initializing ensem-
bles with the N models that have the best uni-model perfor-
mance on the hillclimb set and performance metric.

Bagged Ensemble Selection: It is well known that fea-
ture subset selection (e.g. forward stepwise feature selec-
tion) is unstable when there are many relevant features [2].
Ensemble selection is like feature selection, where models
are features and model subsets are found by forward step-
wise selection. Because of this, ensemble selection also has

high variance. Ensemble selection uses bagging over mod-
els to reduce this variance. Multiple ensembles are built
from random subsets of the models, and then averaged to-
gether. This is analogous to the feature bagging methods
proposed by Bay [1] and Bryll et al. [5] and used in random
forests [4].

Another technique used in the original paper is allowing
models to be added to the ensemble more than once. This
provides two benefits. First, models added multiple times
get more weight in the ensemble average. Second, when
models are added without replacement, ensemble perfor-
mance deteriorates quickly after the best models have been
exhausted because poorer models must then be added. This
makes deciding when to stop adding models to the ensemble
critical because overshooting the optimal stopping point can
yield much worse performance. Selection with replacement
allows selection to continue adding copies of good mod-
els instead of being forced to add inferior models. This, in
turn, makes deciding when to stop adding models far less
critical. All of the experiments in this paper use these three
techniques.

3 Methodology

We use all of the learning methods and data sets used by
Caruana et al. [7], and all of the performance metrics except
CAL (a probability calibration metric) and SAR (a metric
that combines accuracy, squared error, and ROC area). In
addition, we also train models with logistic regression (LO-
GREG), naı̈ve bayes (NB), and random forests (RF) [4], and
experiment with four additional data sets: MG, CALHOUS,
COD, and BACT. All of the data sets are binary classifi-
cation problems. The learning methods and data sets are
described in Appendix A and B, respectively. The per-
formance metrics we study are described in the following
subsection.

3.1 Performance Metrics

The eight performance metrics we use can be divided
into three groups: threshold metrics, ordering/rank metrics
and probability metrics.

The threshold metrics are accuracy (ACC), F-score
(FSC) and lift (LFT). For thresholded metrics, it is not im-
portant how close a prediction is to a threshold, only if it is
above or below threshold. See Giudici [10] for a description
of Lift Curves. Usually ACC and FSC have a fixed thresh-
old (we use 0.5). For lift, often a fixed percent, p, of cases
are predicted as positive and the rest as negative (we use
p = 25%).

The ordering/rank metrics depend only on the ordering
of the cases, not the actual predicted values. As long as
ordering is preserved, it makes no difference if predicted
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Table 1. Performance with and without model calibration. The best score in each column is bolded.
ACC FSC LFT ROC APR BEP RMS MXE MEAN

ES-BOTH 0.920 0.888 0.967 0.982 0.972 0.964 0.932 0.944 0.946
ES-PREV 0.922 0.893 0.967 0.981 0.966 0.965 0.919 0.932 0.943
ES-NOCAL 0.919 0.897 0.967 0.982 0.970 0.965 0.912 0.925 0.942
ES-CAL 0.912 0.847 0.969 0.981 0.969 0.966 0.935 0.940 0.940
BAYESAVG-BOTH 0.893 0.814 0.964 0.978 0.963 0.956 0.918 0.934 0.928
BAYESAVG-CAL 0.889 0.820 0.962 0.977 0.960 0.955 0.912 0.925 0.925
MODSEL-BOTH 0.871 0.861 0.939 0.973 0.948 0.938 0.901 0.916 0.918
BAYESAVG-PREV 0.881 0.789 0.956 0.970 0.956 0.947 0.893 0.911 0.913
MODSEL-PREV 0.872 0.860 0.939 0.973 0.948 0.938 0.879 0.892 0.913
MODSEL-CAL 0.870 0.819 0.943 0.973 0.948 0.940 0.892 0.910 0.912
MODSEL-NOCAL 0.871 0.858 0.939 0.973 0.948 0.938 0.861 0.871 0.907
BAYESAVG-NOCAL 0.875 0.784 0.955 0.968 0.953 0.941 0.874 0.892 0.905

values fall between 0 and 1 or 0.89 and 0.90. These metrics
measure how well the positive cases are ordered before neg-
ative cases and can be viewed as a summary of model per-
formance across all possible thresholds. The rank metrics
we use are area under the ROC curve (ROC), average pre-
cision (APR), and precision/recall break even point (BEP).
See Provost and Fawcett [19] for a discussion of ROC from
a machine learning perspective.

The probability metrics are minimized (in expectation)
when the predicted value for each case coincides with the
true conditional probability of that case being positive class.
The probability metrics are squared error (RMS) and cross-
entropy (MXE).

3.2 Comparing Across Performance Metrics

To permit averaging across metrics and problems, per-
formances must be placed on comparable scales. Following
Caruana et al. [7] we scale performance for each problem
and metric from 0 to 1, where 0 is baseline performance
and 1 is the best performance achieved by any model or en-
semble. We use the following baseline model: predict p for
every case, where p is the percent of positives in the data.

One disadvantage of normalized scores is that recovering
a raw performance requires knowing what performances de-
fine the top and bottom of the scale, and as new best models
are found the top of the scale may change. Note that the
normalized scores presented here differ from those reported
in Caruana et al. [7] because we are finding better models
that shift the top of the scales. The numbers defining the
normalized scales can be found in Appendix C.

4 Ensembles of Calibrated Models

Models trained by different learning algorithms do not
necessarily “speak the same language”. A prediction of

0.14 from a neural net does not necessarily mean the same
thing as a prediction of 0.14 from a boosted tree or SVM.
Predictions from neural nets often are well-calibrated pos-
terior probabilities, but predictions from SVMs are just nor-
malized distances to the decision surface. Averaging pre-
dictions from models that are not on commensurate scales
may hurt ensemble performance.

In this section we evaluate the performance of ensem-
ble selection after “translating” all model predictions to the
common “language” of well-calibrated posterior probabili-
ties. Learning algorithms such as boosted trees and stumps,
SVMs, or naı̈ve bayes have poorly calibrated predictions
[15]. A number of methods have been proposed for map-
ping predictions to posterior probabilities. In this paper we
adopt the method Platt developed for SVMs [18], but which
also works well for other learning algorithms [15]. Platt’s
method transforms predictions by passing them through a
sigmoid whose parameters are learned on an independent
calibration set. In this paper, the ensemble selection hill-
climb set is used for calibration as well.

Table 1 shows the performance of ensemble selection
(ES), model selection (MODSEL),2 and Bayesian model
averaging (BAYESAVG) [8], with and without calibrated
models. Results are shown for four different model li-
braries: 1) only uncalibrated models (NOCAL), 2) only cal-
ibrated models (CAL), 3) both calibrated and uncalibrated
models (BOTH), and 4) only SVMs are calibrated, to mimic
prior experiments [7] (PREV). Each entry is the average of
five folds on each of the eleven problems. The last column
shows the mean performance over all eight metrics. Rows
are sorted by mean performance.

Comparing results for ensemble selection with and with-
out calibration (ES-CAL and ES-NOCAL), we see that cali-
brating models improves RMS and MXE (significant at .05)
but hurts FSC. There is little difference for LFT, ROC, APR

2Model selection chooses the best single model using the hillclimb set.
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and BEP. For model selection we see the same trends: cali-
brated models yield better RMS and MXE and worse FSC.
The magnitudes of the differences suggest that most if not
all of the improvement in RMS and MXE for ensemble se-
lection with calibrated models is due to having better mod-
els in the library rather than from ensemble selection taking
advantage of the common scale of the calibrated models.
We are not sure why calibration makes FSC performance
worse for both MODSEL and ES, but again suspect that the
differences between ES-CAL and ES-NOCAL are due to
differences in the performance of the base-level models.

Having both calibrated and uncalibrated models in the
library (ES-BOTH and MODSEL-BOTH) gives the best of
both worlds: it alleviates the problem with FSC while re-
taining the RMS and MXE improvements. For the rest of
the experiments in this paper we use libraries containing
both calibrated and uncalibrated models.

Unlike with ensemble selection, using calibrated models
for Bayesian model averaging improves performance on all
metrics, not just RMS and MXE (significant at .05). With
calibrated models, Bayesian averaging outperforms model
selection but is still not as good as ensemble selection.

5 Analysis of Training Size

The original ensemble selection paper demonstrated the
method’s effectiveness using relatively small hillclimbing
sets containing 1000 data points. Since the data used for
hillclimbing is data taken away from training the individ-
ual models, keeping the hillclimb set small is important.
Smaller hillclimb sets, however, are easier to overfit to, par-
ticularly when there are many models from which to select.

To explore ensemble selection’s sensitivity to the size of
the hillclimb set, we ran ensemble selection with hillclimb
sets containing 100, 250, 500, 1000, 2500, 5000, and 10000
data points. In each run we randomly selected the points for
the hillclimb set and used the remainder for the test set. The
hyperspectral and medis data sets contained too few points
to leave sufficient test sets when using a 10K hillclimbing
set and were omitted. Due to time constraints and the cost
of generating the learning curves, we only used one random
sample at each size and did not repeat the experiment.

Figure 1 shows learning curves for our eight perfor-
mance measures and their mean. Each graph is an average
over 9 problems. The x-axis uses a logscale to better show
what happens with small hillclimbing sets. Normalized per-
formance scores are plotted on the y-axis. For comparison,
the graphs include the performance achieved by picking the
single best model (MODSEL).

Unsurprisingly, the performance achieved with both en-
semble selection and model selection using only 100 points
for hillclimbing is quite bad. As data increases, both meth-
ods do better as they overfit less. Interestingly, ensemble

selection is hurt less by a small hillclimbing set than model
selection, suggesting that it is less prone to overfitting than
model selection. Because of this, the benefit of ensemble
selection over the best models appears to be strongest when
training data is scarce, a regime [7] did not examine. (They
used 5k training data with 1k points held aside for ensemble
stepwise selection.) As the size of the hillclimbing sets goes
from 1k to 10k, ensemble selection maintains its edge over
model selection.

With small hillclimb sets, using bagging with ensemble
selection is crucial to getting good performance; without
it, mean performance using a 100 point hillclimb set drops
from 0.888 to 0.817. In contrast, bagging provides very
little if any benefit when a very large hillclimb set is used
(more than 5000 points with our data sets).

6 Cross-Validated Ensemble Selection

It is clear from the results in Section 5 that the larger the
hillclimb set, the better ensemble selection’s performance
will be. To maximize the amount of available data, we apply
cross-validation to ensemble selection. Simply wrapping
cross-validation around ensemble selection, however, will
not help because the algorithm will still have just a fraction
of the training data available for hillclimbing. Instead, we
embed cross-validation within ensemble selection so that all
of the training data can be used for the critical ensemble
hillclimbing step. Conceptually, the procedure makes cross-
validated models, then runs ensemble selection the usual
way on a library of cross-validated base-level models.

A cross-validated model is created by training a model
for each fold with the same model parameters. If there are
5 folds, there will be 5 individual models (each trained on
4000 points) that are ‘siblings’; these siblings should only
differ based on variance due to their different training sam-
ples. To make a prediction for a test point, a cross-validated
model simply averages the predictions made by each of the
sibling models. The prediction for a training point (that sub-
sequently will be used for ensemble hillclimbing), however,
only comes from the individual model that did not see the
point during training. In essence, the cross-validated model
delegates the prediction responsibility for a point that will
be used for hillclimbing to the one sibling model that is not
biased for that point.

Selecting a cross-validated model, whether during model
selection or ensemble selection, means choosing all of the
sibling models as a unit. If 5-fold cross-validation is used,
selection chooses groups containing 5 sibling models at a
time. In this case, when selection adds a cross-validated
model to a growing ensemble, it really adds 5 different mod-
els of the same model type to the ensemble, each of which
receives the same weight in the ensemble average.

We ran ensemble selection with 5-fold cross-validation;
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Figure 1. Learning curves for ensemble selection with and without bagging, and for picking the best
single model (modsel).

Table 2. Performance with and without cross-validation for ensemble selection and model selection.
ACC FSC LFT ROC APR BEP RMS MXE MEAN

ES-BOTH-CV 0.935 0.926 0.982 0.996 0.992 0.977 0.984 0.989 0.973
MODSEL-BOTH-CV 0.907 0.923 0.971 0.985 0.968 0.963 0.945 0.961 0.953
ES-BOTH 0.920 0.888 0.967 0.982 0.972 0.964 0.932 0.944 0.946
MODSEL-BOTH 0.871 0.861 0.939 0.973 0.948 0.938 0.901 0.916 0.918

this is analogous to normal ensemble selection with a 5000
point hillclimb set. Table 2 shows the results averaged over
all the problems. Not only does cross-validation greatly im-
prove ensemble selection performance, it also provides the
same benefit to model selection. Five-fold cross-validated
model selection actually outperforms non-cross-validated
ensemble selection by a small but noticeable amount. How-
ever, ensemble selection with embedded cross-validation
continues to outperform model selection.

Table 3 provides a different way to look at the results.
The numbers in the table (except for the last row) are the
percent reduction in loss of cross-validated ensemble se-
lection, relative to non-cross-validated model selection, the
baseline used in Caruana et al. [7]. For example, if model

selection achieves a raw accuracy score of 90%, and cross-
validated ensemble selection achieves 95% accuracy, then
the percent reduction in loss is 50%—the loss has been re-
duced by half. The MEAN row is the average improvement
for each metric, across datasets. For comparison, the PREV
row is the performance of the original non-cross-validated
ensemble selection method (i.e. no cross-validation and
only SVMs are calibrated).

Embedding cross-validation within ensemble selection
doubles its benefit over simple model selection (from 6.90%
to 12.77%). This is somewhat of an unfair comparison; if a
cross-validated model library is available, it is just as easy
to do cross-validated model selection as it is to do cross-
validated ensemble selection. The last row in Table 3 shows
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Table 3. Percent loss reduction by dataset.

ACC FSC LFT ROC APR BEP RMS MXE MEAN
ADULT 2.77 5.89 8.72 7.45 6.70 7.58 2.26 4.08 5.68
BACT 2.08 3.83 16.42 4.13 5.49 1.76 1.42 4.15 4.91
CALHOUS 7.95 9.49 48.00 8.69 8.81 6.15 7.17 12.74 13.63
COD 5.73 7.46 14.33 9.14 10.52 7.11 2.39 3.79 7.56
COVTYPE 6.68 7.26 12.35 11.34 14.99 7.64 7.80 12.92 10.12
HS 13.66 16.36 12.32 37.53 37.78 16.77 12.65 27.43 21.81
LETTER.p2 15.21 14.50 100.00 32.84 33.05 15.85 17.13 29.47 32.26
LETTER.p1 21.55 25.66 0.29 69.10 45.29 19.25 19.59 34.58 29.41
MEDIS 2.77 -0.05 2.08 6.33 7.28 4.62 1.40 2.70 3.39
MG 4.45 1.98 4.25 11.84 12.65 6.04 2.57 6.10 6.23
SLAC 2.49 3.27 13.65 6.92 9.62 2.73 1.66 3.33 5.46
MEAN 7.76 8.70 21.13 18.67 17.47 8.68 6.91 12.84 12.77
PREV 4.96 4.56 16.22 8.43 6.24 5.15 3.27 6.39 6.90
MEANcv 2.89 3.07 10.82 9.97 9.37 2.84 2.54 4.22 5.71

the percent loss reduction of cross-validated ensemble se-
lection compared to cross-validated model selection. Com-
paring PREV and MEANcv , we see that after embedding
cross-validation, ensemble selection provides slightly less
benefit over model selection than un-cross-validated ensem-
ble selection did over un-cross validated model selection.

While training five times as many models is computa-
tionally expensive, it may be useful for domains where the
best possible performance is needed. Potentially more in-
teresting, in domains where labeled data is scarce, cross-
validated ensemble selection is attractive because a) it does
not require sacrificing part of the training data for hillclimb-
ing, b) it maximizes the size of the hillclimbing set (which
Figure 1 shows is critical when hillclimb data is small), and
c) training the cross-validated models is much more feasible
with smaller training data.

7 Direct Metric Optimization

One interesting feature of ensemble selection is its abil-
ity to build an ensemble optimized to an arbitrary metric. To
test how much benefit this capability actually provides, we
compare ensemble selection that optimizes the target met-
ric with ensemble selection that optimizes a predetermined
metric regardless of the target metric. For each of the 8
metrics, we train an ensemble that optimizes it and evaluate
the performance on all metrics. Optimizing RMS or MXE
yields the best results.

Table 4 lists the performance of ensemble selection for a)
always optimizing to RMS, b) always optimizing to MXE,
and c) optimizing the true target metric (OPTMETRIC).
When cross-validation is not used, there is modest benefit
to optimizing to the target metric. With cross-validation,
however, the benefit from optimizing to the target metric is

Table 4. Performance of ensemble selection
when forced to optimize to one set metric.

RMS MXE OPTMETRIC
ES-BOTH-CV 0.969 0.968 0.973
ES-BOTH 0.935 0.936 0.946

significantly smaller.
The scatter plots in Figure 2 plot the performance of op-

timizing to RMS against the performance of optimizing to
OPTMETRIC, with one graph per target metric. Again, we
can see that ensemble selection performs somewhat better
with OPTMETRIC. Always optimizing RMS is frequently
very competitive, especially when performance gets close
to a normalized score of 1. This is why the benefit of direct
metric optimization is so small for cross-validated ensem-
ble selection. These results suggest that optimizing RMS
(or MXE) may be a good alternative if the target metric is
too expensive to use for hillclimbing.

8 Model Library Pruning

Including a large number of base level models, with a
wide variety of parameter settings, in the model library
helps ensure that at least some of the models will have
good performance regardless of the metric optimized. At
the same time, increasing the number of available models
also increases the risk of overfitting the hillclimb set. More-
over, some of the models have such poor performance that
they are unlikely to be useful for any metric one would want
to optimize. Eliminating these models should not hurt per-
formance, and might help.

In this section we investigate ensemble selection’s per-
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Figure 2. Scatter plots of ensemble selection performance when RMS is optimized (x-axis) vs when
the target metric is optimized (y-axis). Points above the line indicate better performance by optimizing
to the target metric (e.g. accuracy) than when optimizing RMS. Each point represents a different data
set; circles are averages for a problem over 5 folds, and X’s are performances using cross-validation.
Each metric (and the mean across metrics) is plotted separately for clarity.

formance when employing varying levels of library prun-
ing. The pruning works as follows: the models are sorted
by their performance on the target metric (with respect to
the hillclimb set), and only the top X% of the models are
used for ensemble selection. Note that this pruning is dif-
ferent from work on ensemble pruning [12, 22, 23, 26, 13].
This is a pre-processing method, while ensemble pruning
post-processes an existing ensemble.

Figure 3 shows the effect of pruning for each perfor-
mance metric, averaged across the 11 data sets and 5
folds using non-cross-validated ensemble selection with
and without bagging. For comparison, flat lines illustrate
the performance achieved by model selection (modsel) and
non-pruned ensemble selection (es-both). The legend is
shown in the ACC graph.

The figure clearly shows that pruning usually does not
hurt ensemble selection performance, and often improves
it. For ACC, LFT, and BEP pruned ensemble selection
(the line with boxes) seems to yield the same performance
as non-pruned ensemble selection . For the other metrics,
pruning yields superior performance. Indeed, when using
more than 50% of the models performance decreases. In-
terestingly, library pruning reduces the need for bagging,
presumably by reducing the potential for overfitting.3

3The bagging line at 100% does not always match the es-both line,
even though these should be equivalent configurations. This is particularly
evident for FSC, the highest variance metric. The sorting performed before
pruning alters ensemble selection’s model sampling, resulting in additional

The graphs in Figure 3 show the average behavior across
our 11 data sets. Ensemble selection’s behavior under prun-
ing may in fact vary when each data set is considered in-
dividually. Averaging across problems could hide different
peak points. Figure 4 shows RMS performance for each of
the problems.

Although performance starts to decline at different prun-
ing levels for the different problems, it is clear that larger
model libraries increase the risk of overfitting the hillclimb
set. Using 100% of the models is never worthwhile. At
best, using the full library can match the performance of us-
ing only a small subset. In the worst case, ensemble selec-
tion overfits. This is particularly evident for the COD data
set where model selection outperforms ensemble selection
unless pruning is employed.

While further work is needed to develop good heuristics
for automatically choosing an appropriate pruning level for
a data set, simply using the top 10–20% models seems to be
a good rule of thumb. An open problem is finding a better
pruning method. For example, taking into account model
diversity (see for example [11, 17]) might find better pruned
sets.

variance.
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Figure 3. Pruned ensemble selection performance.

9 Discussion

In this section we further analyze the benefit of embed-
ding cross validation within ensemble selection and also
briefly describe other work we are doing to make ensem-
ble selection models smaller and faster.

9.1 Benefits of Cross-Validation

The results in Section 6 show that embedding cross-
validation within ensemble selection significantly increases
the performance of ensemble selection. There are two fac-
tors that could explain this increase in performance. First,
the bigger hillclimbing set could make selecting models to
add to the ensemble more reliable and thus make overfit-
ting harder. Second, averaging the predictions of the sibling
models could provide a bagging-like effect that improves
the performance of the base-level models. To tease apart
the benefit due to each of these factors we perform two ad-
ditional experiments.

In one experiment, we use the same hillclimbing set as
cross-validated ensemble selection, but instead of averag-

ing the predictions of the sibling models, we use only the
predictions of one of the siblings. Using this procedure we
construct five ensemble models, one for each fold, and re-
port their mean performance. This provides a measure of
the benefit due to the increase in the size of the hillclimb set
(from cross-validation) while eliminating the bagging-like
effect due to sibling model averaging.

In the other experiment, we use the smaller hillclimb sets
used by un-cross-validated ensemble selection, but we do
average the predictions of the sibling models. We again
construct five ensemble models, one for each fold, and re-
port their mean performance. This allows us to identify the
performance increase due to the bagging-like effect of aver-
aging the predictions of the sibling models.

Table 5 shows the results of these experiments. Entries in
the table show the improvement provided by using a larger
hillclimb set (ES-HILL) and by averaging the sibling mod-
els (ES-AVG) as a percentage of the total benefit of cross-
validated ensemble selection. For example, looking at the
ACC column, increasing the size of the hillclimb set from
1k to 5k yields a benefit equal to 32.9% of the total benefit
provided by cross-validated ensemble selection, and aver-
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Figure 4. RMS performance for pruned ensemble selection.

aging the sibling models yields a benefit equal to 80.5%.
The third row in the table is the sum of the first two rows.

If the sum is lower than 100% the effects from ES-HILL
and ES-AVG are super-additive, i.e. combining the two ef-
fects provides more benefit than the sum of the individual
improvements. If the sum is higher than 100% then the two
effects are sub-additive. For ACC, the sum is 113.4%, indi-
cating that the effects of these two factors are sub-additive:
the total performance is slightly less than would be expected
if the factors were independent. Except for the high vari-
ance metrics, FSC and ACC, the sums are close to 100%,
indicating that the two effects are nearly independent.

The learning curves in Figure 1 suggest that increas-

ing the size of the hillclimb set from 1k to 5k would ex-
plain almost all of the benefit of cross-validation. These
results, however, show that on average across the eight met-
rics the benefit from ES-HILL and ES-AVG are roughly
equal. About half of the benefit from embedding cross-
validation within ensemble selection appears to result from
the increase in the size of the hillclimb set, and the other
half appears to result from averaging the sibling models.
Increasing the size of the hillclimb set via cross-validation
(as opposed to having more data available for hillclimbing)
provides less benefit in practice because there is a mismatch
between the base-level models used to make predictions on
the hillclimbing set and the sibling-averaged models that
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Table 5. Breakdown of improvement from cross-validation.

ACC FSC LFT ROC APR BEP RMS MXE MEAN
ES-HILL 32.9% 37.2% 48.0% 38.8% 40.8% 19.4% 55.1% 56.7% 41.1%
ES-AVG 80.5% 13.6% 54.0% 59.0% 55.7% 77.4% 46.8% 51.8% 54.9%
SUM 113.4% 50.8% 102.0% 97.8% 96.5% 96.8% 101.9% 108.5% 96.0%

will be used in the ensemble. In other words ensemble se-
lection is hillclimbing using slightly different models than
the ones it actually adds to the ensemble.

9.2 Model Compression

While very accurate, the ensembles built by ensemble se-
lection are exceptionally complex. On average, storing the
learned ensemble requires 550 MB, and classifying a single
test case takes about 0.5 seconds. This prohibits their use
in applications where storage space is at a premium (e.g.
PDAs), where test sets are large (e.g. Google), or where
computational power is limited (e.g. hearing aids). In a sep-
arate paper we address these issues by using a model com-
pression [6] method to obtain models that perform as well
as the ensembles built by ensemble selection, but which are
faster and more compact.

The main idea behind model compression is to train a
fast and compact model to approximate the function learned
by a slow, large, but high performing model. Unlike the true
function that is unknown, the function learned by the high
performing model is available and can be used to label large
amounts of synthetic data. A fast, compact and expressive
model trained on enough synthetic data will not overfit and
will closely approximate the function learned by the orig-
inal model. This allows a slow, complex model such as a
massive ensemble to be compressed into a fast, compact
model with little loss in performance.

In the model compression paper, we use neural networks
to compress ensembles produced by ensemble selection. On
average the compressed models retain more than 90% of the
improvement provided by ensemble selection (over model
selection), while being more than 1000 times smaller and
1000 times faster.

10 Conclusions

Embedding cross-validation inside ensemble selection
greatly increases its performance. Half of this benefit is due
to having more data for hillclimbing; the other half is due to
a bagging effect that results from the way cross-validation
is embedded within ensemble selection. Unsurprisingly, re-
ducing the amount of hillclimbing data hurts performance
because ensemble selection can overfit this data more easily.

In comparison to model selection, however, ensemble selec-
tion seems much more resistant to overfitting when data is
scarce. Further experiments varying the amount of training
data provided to the base-level models are needed to see if
ensemble selection is truly able to outperform model selec-
tion by such a significant amount on small data sets.

Counter to our and others’ intuition [9], calibrating mod-
els to put all predictions on the same scale before averaging
them did not improve ensemble selection’s effectiveness.
Most of calibration’s improvement comes from the superior
base-level models.

Our experiments show that directly optimizing to a tar-
get metric is better than always optimizing to some prede-
termined metric. That said, always optimizing to RMS or
MXE was surprisingly competitive. These metrics may be
good optimization proxies if the target metric is too expen-
sive to compute repeatedly during hillclimbing.

Finally, pruning the number of available models reduces
the risk of overfitting during hillclimbing while also yield-
ing faster ensemble building. In our experiments pruning
rarely hurt performance and frequently improved it.

Acknowledgments

We thank Lars Backstrom for help with exploring alter-
native model calibration methods and the anonymous re-
viewers for helpful comments on paper drafts. This work
was supported by NSF Award 0412930.

References

[1] S. D. Bay. Combining nearest neighbor classifiers through
multiple feature subsets. In ICML, pages 37–45, 1998.

[2] L. Breiman. Heuristics of instability in model selection.
Technical report, Statistics Department, University of Cal-
ifornia at Berkeley, 1994.

[3] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[4] L. Breiman. Random forests. Machine Learning, 45(1):5–
32, 2001.

[5] R. K. Bryll, R. Gutierrez-Osuna, and F. K. H. Quek. At-
tribute bagging: Improving accuracy of classifier ensem-
bles by using random feature subsets. Pattern Recognition,
36(6):1291–1302, 2003.

10



[6] C. Bucila, R. Caruana, and A. Niculescu-Mizil. Model com-
pression: Making big, slow models practical. In Proc. of the
12th International Conf. on Knowledge Discovery and Data
Mining (KDD’06), 2006.

[7] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes.
Ensemble selection from libraries of models. In ICML,
2004.

[8] P. Domingos. Bayesian averaging of classifiers and the over-
fitting problem. In ICML, pages 223–230. Morgan Kauf-
mann, San Francisco, CA, 2000.

[9] R. P. W. Duin. The combining classifier: To train or not to
train? In ICPR (2), pages 765–770, 2002.

[10] P. Giudici. Applied Data Mining. John Wiley and Sons, New
York, 2003.

[11] L. I. Kuncheva and C. J. Whitaker. Measures of diversity in
classifier ensembles and their relationship with the ensemble
accuracy. Machine Learning, 51(2):181–207, 2003.

[12] D. D. Margineantu and T. G. Dietterich. Pruning adaptive
boosting. In ICML, pages 211–218. Morgan Kaufmann,
1997.

[13] G. Martı́nez-Munoz and A. Suárez. Pruning in ordered bag-
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A Learning Methods

In addition to the learning methods used by Caruana
et al. [7] (decision trees, bagged trees, boosted trees and
stumps, KNN, neural nets, and SVMs), we use three more
model types: logistic regression, naı̈ve bayes, and random
forests. These are trained as follows:
Logistic Regression (LOGREG): we train both unregular-
ized and regularized models, varying the ridge parameter
by factors of 10 from 10−8 to 104. Attributes are scaled to
mean 0 and standard deviation 1.
Random Forests (RF): we use the Weka implementa-
tion [24]. The forests have 1024 trees, and the size of the
feature set to consider at each split is 1, 2, 4, 6, 8, 12, 16 or
20.
Naı̈ve Bayes (NB): we use the Weka implementation and
try all three of the Weka options for handling continuous at-
tributes: modeling them as a single normal, modeling them
with kernel estimation, or discretizing them using super-
vised discretization.

In total, around 2,500 models are trained for each data
set. When calibrated models are included for ensemble se-
lection the number doubles to 5,000.

B Data Sets

We experiment with 11 binary classification prob-
lems. ADULT, COV TYPE, HS, LETTER.P1, LET-
TER.P2, MEDIS, and SLAC were used by Caruana et
al. [7]. The four new data sets we use are BACT, COD,
CALHOUS, and MG. COD, BACT, and CALHOUS are
three of the datasets used in Perlich et al. [16]. MG is a
medical data set. See Table 6 for characteristics of the 11
problems.

Table 6. Description of problems
PROBLEM #ATTR TRAIN TEST %POZ

ADULT 14/104 4000 35222 25%
BACT 11/170 4000 34262 69%
COD 15/60 4000 14000 50%
CALHOUS 9 4000 14640 52%
COV TYPE 54 4000 25000 36%
HS 200 4000 4366 24%
LETTER.P1 16 4000 14000 3%
LETTER.P2 16 4000 14000 53%
MEDIS 63 4000 8199 11%
MG 124 4000 12807 17%
SLAC 59 4000 25000 50%
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Table 7. Scales used to compute normalized scores. Each entry shows bottom / top for the scale.
ACC FSC LFT ROC APR BEP RMS MXE

ADULT 0.752 / 0.859 0.398 / 0.705 1.000 / 2.842 0.500 / 0.915 0.248 / 0.808 0.248 / 0.708 0.432 / 0.312 0.808 / 0.442
BACT 0.692 / 0.780 0.818 / 0.855 1.000 / 1.345 0.500 / 0.794 0.692 / 0.891 0.692 / 0.824 0.462 / 0.398 0.891 / 0.697
CALHOUS 0.517 / 0.889 0.681 / 0.893 1.000 / 1.941 0.500 / 0.959 0.517 / 0.964 0.517 / 0.895 0.500 / 0.283 0.999 / 0.380
COD 0.501 / 0.784 0.666 / 0.796 1.000 / 1.808 0.500 / 0.866 0.499 / 0.864 0.499 / 0.782 0.500 / 0.387 1.000 / 0.663
COVTYPE 0.639 / 0.859 0.531 / 0.804 1.000 / 2.487 0.500 / 0.926 0.362 / 0.879 0.361 / 0.805 0.480 / 0.320 0.944 / 0.478
HS 0.759 / 0.949 0.389 / 0.894 1.000 / 3.656 0.500 / 0.985 0.243 / 0.962 0.241 / 0.898 0.428 / 0.198 0.797 / 0.195
LETTER.p1 0.965 / 0.994 0.067 / 0.917 1.000 / 4.001 0.500 / 0.999 0.036 / 0.975 0.035 / 0.917 0.184 / 0.067 0.219 / 0.025
LETTER.p2 0.533 / 0.968 0.696 / 0.970 1.000 / 1.887 0.500 / 0.996 0.534 / 0.997 0.533 / 0.970 0.499 / 0.157 0.997 / 0.125
MEDIS 0.893 / 0.905 0.193 / 0.447 1.000 / 2.917 0.500 / 0.853 0.108 / 0.462 0.107 / 0.469 0.309 / 0.272 0.491 / 0.365
MG 0.831 / 0.900 0.290 / 0.663 1.000 / 3.210 0.500 / 0.911 0.170 / 0.740 0.169 / 0.686 0.375 / 0.278 0.656 / 0.373
SLAC 0.501 / 0.726 0.667 / 0.751 1.000 / 1.727 0.500 / 0.813 0.501 / 0.816 0.501 / 0.727 0.500 / 0.420 1.000 / 0.755

C Performance Scales

Table 7 lists the performance numbers that determine the
normalized scores. Each entry contains the baseline per-
formance (bottom of the scale) and the best performance
achieved by any model or ensemble (top of the scale).
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