
Learning Graphical Model Structure using L1-Regularization Paths

Mark Schmidt∗ and Alexandru Niculescu-Mizil+ and Kevin Murphy∗
Department of Computer Science

∗University of British Columbia/+Cornell University

Abstract

Sparsity-promoting L1-regularization has recently been suc-
cesfully used to learn the structure of undirected graphical
models. In this paper, we apply this technique to learn the
structure of directed graphical models. Specifically, we make
three contributions. First, we show how the decomposability
of the MDL score, plus the ability to quickly compute en-
tire regularization paths, allows us to efficiently pick the opti-
mal regularization parameter on a per-node basis. Second, we
show how to use L1 variable selection to select the Markov
blanket, before a DAG search stage. Finally, we show how
L1 variable selection can be used inside of an order search al-
gorithm. The effectiveness of these L1-based approaches are
compared to current state of the art methods on 10 datasets.

Introduction
Learning the structure of graphical models from data is use-
ful for a variety of tasks, ranging from density estimation to
scientific discovery. Unfortunately, it is an NP-hard prob-
lem (Chi96). Consequently, many heuristic techniques have
been proposed. In this paper, we propose a new heuristic
technique and we show experimentally that it outperforms
several existing approaches on a variety of datasets.

A simple but effective approach to learning graph struc-
ture is to learn a dependency network (HCM+00). This is a
series of independently learned conditional distributions of
the formp(xj |x−j), wherex−j represents all variables ex-
ceptxj . Typically these local conditional probability distri-
butions (CPDs) are represented as classification/regression
trees, so that each node can select just a subset of neighbors.

If the data is jointly Gaussian, one can represent the
CPDs using linear regression. By imposing a sparsity-
promoting L1 regularization penalty on the regression co-
efficients (Tib96), one can efficiently select the neighbors
using algorithms such as LARS (EJHT04). Under certain
assumptions, Meinshausen and Buhlmann (MB06) proved
that this method correctly recovers the undirected network
structure in the large sample limit.

If the data is binary, one can replace linear regression with
logistic regression. One advantage of this over tabular repre-
sentations of CPDs is that the number of parameters is linear
in the number of parents, rather than exponential. Recently,
Wainwright et al. (WRL06) extended the Meinshausen and
Buhlmann consistency proof to the case of logistic regres-
sion.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The above L1 techniques learn the topology of the undi-
rected graph, but do not learn its parameters; this makes the
resulting models unsuitable for density estimation and pre-
diction. In the case ofGaussian Markov networks, one can
jointly estimate the structure and parameters by imposing an
L1 prior on each element of the precision matrix, and then
finding the MAP estimate using convex optimization (see
e.g., (BGdN06)). In the case ofbinary Markov networks,
one can in principle adopt the same approach, although it
is in general NP-hard to estimate the parameters of discrete
Markov nets, requiring approximations such as loopy belief
propagation (LGK07).

One drawback of the above techniques is that they assume
that each node has the same amount of L1 regularization;
this constant is often set by cross validation. However, in
many networks (e.g., gene regulatory networks), some nodes
will have high degree (connectivity) and others low degree.
Our first contribution is to propose an efficient method for
selecting the optimal regularization constant on a per node
basis by using the regularization path.

Another drawback of the above techniques is that they
learn undirected graphical models. As we mentioned, para-
meter estimation in such models is NP-hard in general (ex-
cept for the Gaussian case). Also, undirected models cannot
be used to model causality (in the sense of (Pea00)), which
is useful in many domains such as molecular biology where
interventions can be performed. As far as we know, L1 tech-
niques have not been used to learn DAG structure. Several
authors (e.g., (LY05)) learn sparse Gaussian DAGs using L1
techniques, given an ordering, but they do not address the
issue of learning the correct variable ordering, and instead
convert the result back to an undirected graph.

Our second contribution is to show how L1 techniques
can be used to improve two existing DAG learning meth-
ods. The first DAG learning method that we improve is
called max-min hill-climbing (MMHC) (TBA06) which was
shown to outperform many other methods, in a series of
extensive experiments. MMHC first identifies a set of po-
tential neighbors (parents and children) for each node us-
ing conditional independency tests, where the conditioning
sets are grown in a greedy way; this is called the max-min
parents-children (MMPC) algorithm. The output of MMPC
is then used to prune out potential neighbors before per-
forming standard hill-climbing through this restricted DAG
space. In this paper, we show that using L1 regression to
find a set of potential neighbors (a technique we call L1MB,
for ‘L1-regularized Markov Blanket’) results in much lower
false negative rates (with a comparable rate of pruning). In

addition, our method is more statistically efficient, sinceit
does not need to perform conditional independency tests on
exponentially large conditioning sets.

The second DAG learning method that we improve is
called order search (OS) (TK05), which was also shown
to outperform some existing methods, such as DAG search
with sparse candidate pruning. (The OS and MMHC pa-
pers did not compare against each other; we provide such a
comparison below.) OS performs heuristic search through
the space of topological orderings, rather than through the
space of DAGs (c.f., (LP96; FK03)). The space of orderings
is much smaller than the space of DAGs:O(d!) orders vs

O(d!2(
d

2)) DAGs (Rob73), whered is the number of nodes.
Furthermore, given an ordering, the problem of structure
learning reduces tod independent variable selection prob-
lems (each node can choose its parents from its predeces-
sors in the ordering independently). The approach taken in
the OS paper was to use exhaustive search through all possi-
ble parent sets for each node. We show that one can use L1
regression to efficiently approximate this.

Methods
We assume that we have fully observed (complete) data,
which is either continuous or binary (we discuss the exten-
sion to discrete data with more than two categories at the
end), and that our goal is to find the DAGG that maximizes
the BIC score (HGC95), or equivalently minimizes the MDL
(minimum description length) cost, defined as

MDL(G) =

d∑

j=1

NLL(j, πj , θ̂
mle
j) +

|θ̂mle
j |

2
log n

NLL(j, πj , θ) = −
n∑

i=1

log p(Xij |Xi,πj
, θ)

where n is the number of data cases,πj are the par-
ents of nodej in G, NLL(j, πj , θ) is the negative log-
likelihood of nodej with parentsπj and parametersθ, and
θ̂mle

j = arg minθ NLL(j, πj , θ) is the maximum likelihood
estimate ofj’s parameters. (We use the MDL objective
since there is no natural conjugate prior for logistic regres-
sion, so computing the integral needed for the Bayesian
score is hard.) For linear regression,p(Xj |πj , θj) =
N (Xj |θ

T
j πj , 1) (the data is standardized soσ2 = 1 for each

node). For logistic regression,p(Xj |πj , θj) = f(Xjθ
T
j πj),

whereXj ∈ {−1,+1} andf(z) = 1/(1 + e−z) is the sig-
moid function. The term|θ̂j | is the number of free parame-
ters in the CPD for nodej. For linear regression,|θ̂j | = |πj |,
the number of parents; in the case of logistic regression, we
also include a bias (offset) termθ0.

We can find the MLEs of linear regression CPDs using
least squares, and of logistic regression using the iteratively
reweighted least squares (IRLS) algorithm. We call the op-
eration of estimating the parameters of each CPD a “family
fit”. This takesO(I(np2 + p3)) time, wherep = |πj | is
the size of the parent set, andI is the number of IRLS itera-
tions. TypicallyI < 10, so we treat this as a constant. Also,

we assumen � p, so the overall cost isO(np2). When
comparing running times between different algorithms be-
low, we will treat a family fit as a primitive unit of computa-
tion. If we were to use tabular CPDs, a family fit would take
O(n) time butO(2p) space, assuming binary nodes. For this
reason, it is standard to impose a fan-in constraint,p ≤ k.
However, since we use linear/ logistic regression CPDs, we
do not need this restriction, sok is set tod.

L1 penalized regression
We now consider the problem of choosing the set of neigh-
bors/parents for nodej from some setU . This can be done
by solving the following:

θ̂L1
j (U) = arg min

θ
NLL(j, U, θ) + λ||θ||1

whereλ is the scale of the penalty on the L1 norm of the
parameter vector (excludingθ0). In the Gaussian case, this
can be formulated as a quadratic objective subject to linear
constraints; in the binary case, this is a non-quadratic objec-
tive, but is still convex. The effect of these constraints isto
drive many of the parameters strictly to zero (Tib96). This
lets us use the technique as a variable selection strategy. In
particular, we setπj ⊆ U to be the indices of the non-zero
elements of̂θL1

j . We will call this technique “L1 variable
selection”.

A variety of different techniques have been proposed to
solve this convex constrained optimization problem. For the
Gaussian case, the method of choice is LARS (least angle re-
gression and shrinkage) (EJHT04). For the binary case, we
re-formulate the optimization as a bound-constrained prob-
lem, and solve it using an efficient Two-Metric Projection
strategy (Ber99). We used L-BFGS to scale the gradient,
and found this to be more efficient than the ‘IRLS-LARS’
algorithm of (LLAN06).

Choosing λ

An important issue is choosing the strength of the regular-
izer,λ. A simple approach is to use cross-validation, but this
will be slow if we want to use a differentλ for every node.
However, we do not want to use the sameλ for all nodes for
two reasons. First, in order search techniques, nodes late in
the topological ordering have more parents to choose from,
and may therefore need a stronger regularizer. Second, some
nodes in the true structure may have much higher connectiv-
ity than others. We have done experiments where we force
all nodes to have the sameλ, and performance is worse (re-
sults not shown due to lack of space).

We propose to only consider values ofλ at discontinuities
along the regularization path; these points can be computed
efficiently (see discussion below), and the MDL-optimal
value must lie at one of these points. To see why, first note
that the negative log likelihood is monotonically decreas-
ing in λ. Second, note that the number of free parameters
is piecewise constant, and increases only occur at values
of λ where new parameters are introduced (call this setΛ).
Hence the optimal MDL score must be achievable by a point
λ ∈ Λ. See Figure 1 for an illustration (this argument also
applies to the Akaike Information Criterion).

In the case of linear regression, the regularization path
is piecewise linear, and it is possible to compute the op-
timal θ̂L1

j for all possible parametersλ in O(p3 + np2),
where p is the number of parameters (EJHT04); this is
the same asymptotic cost as a single least squares fit. In
the case of generalized linear models (GLMs), the reg-
ularization path is no longer piecewise-linear. However,
predictor-corrector strategies can be used for following such
curved regularization paths (see (PH06)). In this paper,
we adopt the simpler scheme of simply searching along a
grid of values forλ. The procedure begins withλmax =
max |∇NLL(j, U, [θmle

0 ;~0])| (ie. the maximum gradient
magnitude when all non-bias covariates are inactive and the
bias variable is at its optimal value), since all greater values
of λ will have all non-bias variables inactive. We then take
p evenly-spaced decreasing steps along theλ-axis (untilλ is
0). A slightly more sophisticated strategy could backtrack if
we “overshoot” a discontinuity.

Since it suffices to look atO(p) values ofλ, the total cost
to compute the whole path for a node isO(np3) per node
in the GLM case, andO(np2) in the Gaussian case. We
also use a “warm-start” strategy, which consists of initializ-
ing the gradient-projection algorithm at the previous value’s
solution for the decreasing values ofλ. We found that this
reduced the number of descent iterations over a “cold-start”
strategy (typically we need less than 5 iterations perλ).

There is one subtlety we have overlooked. When we com-
pute the regularization path, we computeθ̂L1

j (λ), but the

MDL score uses the unconstrained parametersθ̂mle
j (for the

non-zero set of variables). However, we can modify LARS
to compute these estimates for the same asymptotic cost (in
the linear regression case) by re-using the Cholesky matrix
factorization (for the GLM case, we estimateθ̂mle

j whenever
the non-zero set of variables changes).

In summary, L1 variable selection consists of 3 compo-
nents: (i) computing the L1-regularization path, (ii) com-
puting the Maximum Likelihood parameters for all non-zero
sets of variables encountered along this path, and (iii) select-
ing the set of variables that achieved the highest MDL score.

L1-Pruned DAG-Search

We can now explain our technique for identifying the
undirected skeleton, which we call L1MB (L1-regularized
Markov Blanket). In this approach, we regress each nodeXj

on all others (U = x−j), using L1 variable selection. This
process takesO(nd3) time per node (for the GLM case), and
(ideally) finds a set that is as small as possible, but that con-
tains all ofj’s parents, children and co-parents (its Markov
blanket). This preprocessing yields a small set of potential
parents that are then used to restrict the edges that are con-
sidered when hill-climbing in the space of DAGs (using the
standard moves of addition, deletion, and reversals). Since
the dependencies may be asymmetric in the finite sample
scenario (i.e., the edgea − b may be found when regressing
ona but not onb), we use the conservative ‘OR’ strategy of
(MB06), where an arc is only excluded if it was not found
in either direction (since the cost of excluding a true edge at

0 5 10 15
1

1.5

2

2.5

3

3.5

4

4.5
x 10

4 Negative Log−Likelihood

0 5 10 15
0

2

4

6

8

10

12
Number of Free Parameters

0 5 10 15
−4

−2

0

2

4
Regularization Path

0 5 10 15
3

4

5

6

7

8

9
x 10

4 BIC Value

Figure 1: Regularization path for a Gaussian negative log-
likelihood with an L1-regularizer. The horizontal axis is the bound
on the L1 norm of the coefficient vector, i.e., at locationt we have
||θ||1 ≤ t (wheret ∝ 1/λ)). Top left: negative log likelihood.
Bottom left: the parameter values. Top right: number of free para-
meters. Bottom right: MDL cost. We see that the minimum MDL
must occur at one of the discontinuities along the regularization
path (red lines).

this stage is higher than including a spurious edge)1.

Note that the goal of this pre-processing is not the same
as when learning a dependency network, since we use L1 to
tell us which edges to leave out, rather than which edges to
include. The final decision about which edges to include is
deferred until the DAG search stage, since some edges (e.g.,
between co-parents) may be artefacts of explaining away,
and can be eliminated once the edge orientation is known.

The L1MB preprocessing step is analogous to the first
iteration of the Sparse Candidate (SC) algorithm (FNP99),
and the Max-Min Parents Children (MMPC) algorithm
(TBA06). The SC algorithm requires the user to specify a
bound,c, on the number of possible parents to choose from;
it then selects thec most “relevant” nodes for eachxj us-
ing an association measure (in the full SC algorithm, the set
of relevant nodes is then re-estimated after each round of
structure learning). The main problem with the SC algo-
rithm is that it requires a uniform bound on the number of
parents, which is problematic for the same reasons as using
a uniform value ofλ. In contrast, for eachxj the MMPC
algorithm attempts to prune nodesy where,∃z.y ⊥ xj |z (ie.
y is independent ofxj givenz). The conditioning setsz are
chosen in a greedy way (to maximize the minimum degree
of association betweeny andxj). The conditional indepen-
dency test used isG2 (similar to χ2), using a significance
level cutoffα on the p-value. Note that this creates condi-
tioning sets of size exponential in the number of neighbors.
Also, if one were to do a Bonferroni correction to account
for theO(d2) multiple tests, the statistical power would be
very low. L1MB suffers from neither of these problems.

1We also experimented with the ‘AND’ strategy (requiring
edges to be found in both directions), finding that it prunes more
edges but is more likely to prune correct edges

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

2

4

6

8

10

12

14

16

18

fraction of search space remaining

nu
m

be
r

of
 e

rr
on

eo
us

ly
 r

em
ov

ed
 e

dg
es

error vs degree of neighbor pruning

SC(5)
SC(10)
MMPC(0.05)
MMPC(0.10)
L1MB

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

0

2

4

6

8

10

12

14

16

18

20

log(number of family fits)

nu
m

be
r

of
 s

tr
uc

tu
ra

l e
rr

or
s

error vs time given ordering

Enum+SC(5)
Enum+SC(10)
Enum+MMPC(0.05)
Enum+MMPC(0.10)
L1

500 1000 1500 2000 2500 3000 3500 4000 4500

2.14

2.145

2.15

2.155

2.16

2.165

2.17

2.175

MDL of Current Network vs. Time (alarm network)

DAG
OrderL1
DAG+SC(5)
OrderEnum+SC(5)
DAG+MMPC(0.05)
DAG+L1MB

(a) (b) (c)

Figure 2:(a) Neighbor pruning experiments on 10k binary samples. We plot number of edges removed that were in the true graph vs size of
remaining search space, defined as1 − r/e, wherer is the number of edges removed, ande = d2 − d is the total number of possible edges
(each point is one of 7 BNR data sets). An ideal pruning strategy would bein the bottom left. We see that L1MB (blue pentagons) prunes
substantial portions of the space and did not prune any true edges. (b)Parent selection given a topological ordering on 10k binary samples.
We plot the number of wrong edges (parents) in the learned structure vsthe log-number of family fits for several methods (each point is one of
7 BNR data sets). We show enumeration with 3 different pruning strategiesand a max fan-in of 5, and L1 variable selection without pruning
or restriction. (c) The MDL score of the current network being evaluated vs the total number of family fits. We see that OrderL1 quickly
achieves a good score, but that DAG+MMPC and DAG+L1MB eventually achieve better scores.

L1-Pruned Order-Search
Order search is an alternative to searching through DAG
space. Following (TK05), we use hill climbing to find
the best ordering, where the moves considered are adjacent
swaps in the ordering (‘twiddles’):

(Xi1 , . . . ,Xij
,Xij+1

, . . .) → (Xi1 , . . . ,Xij+1
,Xij

, . . .)

At each step, we consider alld − 1 successors of the cur-
rent ordering and greedily pick the best. This can be imple-
mented such that after each twiddle only 4 new family fits
are needed (TK05), which makes it efficient to move through
order space (other moves are obviously possible, but would
be more expensive to evaluate).

Given an ordering, (TK05) find the best set of parents for
each node using the SC algorithm followed by exhaustive
search, which takesO(ck) family fits (assuming a fan-in
bound ofk). Our approach is to replace the initial prun-
ing and exhaustive search with L1 variable selection, which
takesO(d) family fits. In addition to speed, our method can
handle much higher in-degrees (we do not need a boundc or
k), since we use linear/logistic regression instead of tabular
CPDs.

Experimental results
Our experimental protocol was to acquire 7 networks from
the Bayes net repository (BNR)2 with 27–61 nodes each, and
a maximum fan in of 5.3 We then parameterized the net-
works using linear regression or logistic regression CPDs,
with random parameters.4 We chose the random parame-

2http://www.cs.huji.ac.il/labs/compbio/
Repository

3Specifically, we used the following 7 networks (number of
nodes/ edges in brackets): 1. insurance (27/52), 2. water (32/66),
3. mildew (35/46), 4. alarm (37/46), 5. barley (48/84), 6. hailfinder
(56/66) 7. carpo (61/74)

4We did not use the “standard” parameters that come with some
of these models, as they assume tabular CPDs and non-binary
nodes.

ters such that there tended to be non-negligible correlation
between parents and children. In particular, we sampled
the regression weights from±1 + N (0, 1)/4; the offset
(bias term) was zero in both cases. We then sampled data
from these networks and attempted to recover the original
structure. To be fair, all search methods methods used lin-
ear/logistic CPDs (except the MMPC pruning step where
we used “causal explorer”5). In addition to the above syn-
thetic data, we considered 3 real publicly-available binary
data sets: (i) a subset of the 20-newsgroups data (indicating
the presence/absence of 100 words in 16,242 documents)6,
(ii) the Anonymous Microsoft Web Data Database (indicat-
ing whether 294 websites were visited by 32,711 users, we
restricted to the 57 websites with greater than 250 visits)7,
and (iii) binarized handwritten digits of the number ‘0’ from
the MNIST database (containing 6903 images that we re-
sized to be 16 by 16, and focused on predicting the 131 pix-
els than were non-empty in more than 200 images)8. On
these real data sets, we cannot assess structural error, butwe
can measure the MDL and test-set negative log likelihood
achieved by the different methods.

We performed a large number of experiments, but here we
only have space to summarize a few of the key findings. We
focus on binary observational datasets of size10, 000 for the
synthetic data experiments, and5, 000 for the real data ex-
periments. Details and results for other scenarios (Gaussian,
interventional, different sample sizes, etc.), the raw exper-
imental results, experiments on different variations of the
pruning/searching strategy, and source code to ensure repro-

5http://discover1.mc.vanderbilt.edu/
discover/public/causal\ explorer

6http://www.cs.toronto.edu/∼roweis/data.
html

7http://www.ics.uci.edu/∼mlearn/
MLRepository.html

8http://yann.lecun.com/exdb/mnist/

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

dataset

(M
D

L−
m

in
)/

(m
ax

−
m

in
)

MDL vs dataset

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

dataset

(N
LL

−
m

in
)/

(m
ax

−
m

in
)

test set NLL vs dataset

DAG
OrderL1
DAG+SC(5)
OrderEnum+SC(5)
DAG+MMPC(0.05)
DAG+L1MB

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

dataset

(S
E

−
m

in
)/

(m
ax

−
m

in
)

structural error vs dataset

(a) (b) (c)

Figure 3:(a) MDL on training set. (b) Negative log likelihood on test set. (c) Structural error. All quantities are scaled so the best is 0 and
the worst is 1, i.e., we plot(xi − mini(xi))/(maxi(xi) − mini(xi)), wherexi is the quantity for methodi. We have truncated the vertical
scale at 0.6 for clarity, so if a method is missing, its relative score is worsethan 0.6. All methods have 10k family fits on 10k binary training
samples (5k for data sets 8-10). Test sets are 100k binary samples (except data sets 8-10, where the test set is the remaining examples not
used in training). Datasets: 1. insurance, 2. water, 3. mildew, 4. alarm,5. barley, 6. hailfinder, 7. carpo, 8. msweb, 9. news, 10. mnist.

ducible research are available on the author’s webpage9.

Neighbor pruning
In Figure 2(a), we compare L1MB, MMPC and SC as meth-
ods for estimating the neighbors of each node on the BNR
structures. We use two different candidate sizes ofc = 5 and
c = 10 for sparse candidate (SC) (with pairwise correlation
as the association measure), and two different threshold lev-
elsα = 0.05 andα = 0.1 for MMPC. In contrast, L1MB
has no free parameters. The goal is to maximize the number
of edge removals (in order to constrain the search space)
while minimizing the number of edges that are removed
but which are in the true graph (false negatives). We see
that many methods reduce the search space by a significant
amount, but L1MB did so without introducing false nega-
tives. A low false negative rate is important, since any edges
falsely excluded by an edge-pruning strategy can never be
added back.

Parent selection given an ordering
In Figure 2(b), we compare two different methods for choos-
ing the set of parents given a correct node ordering on the
BNR structures using either exhaustive enumeration or L1
variable selection. Since enumeration takes time exponen-
tial in the size of the set being searched, we first applied the
neighbor-pruning strategies just discussed, and restricted the
max fan-in tok = 5 (the max fan-in among the networks).
We measure how long it takes to fit the model in terms of
the number of family fits, and then we count the number of
false positive and false negative edges. Since the ordering
is known, it is possible to get zero structural error even us-
ing observational data (i.e. we do not need to worry about
Markov equivalence). Figure 2(b) shows that L1 variable
selection is more efficient than using SC pruning, and is as
efficient while making fewer errors than enumeration with
MMPC pruning. Note that we don’t count the cost of SC or
MMPC pruning for the enumeration methods, since this is a
constant cost which will be amortized over many orderings.

9http://www.cs.ubc.ca/∼murphyk/L1structure

Structure Search

Finally, we examine the performance of several search al-
gorithms, in terms of MDL score and test set negative log-
likelihood. For the BNR structures, we generated 100,000
examples to measure test set likelihood, while for the real
data sets we used all data instances except the 5,000 used
for training. We also measured structural error on the BNR
structures, by converting the true DAG to a PDAG (since
the DAG can only be recovered up to Markov Equivalence
without interventions).

We compared our proposed strategies of running DAG-
Search after L1MB pruning and running Order-Search
with L1 variable selection to a standard unpruned DAG-
Search and three state-of-the-art methods: DAG-Search af-
ter SC pruning (FNP99), DAG-Search after MMPC pruning
(TBA06), and Order-Search after SC pruning (with exhaus-
tive enumeration and where we set the fan-in bound to 5)
(TK05).

Since the MDL structure score is not convex, both DAG-
Search and Order-Search methods get stuck in local min-
ima. Thus it is not very meaningful to plot the error vs run-
ning time to reach convergence, since the results would de-
pend too much on the starting point. (We cannot start all
algorithms from the same point, since some search in DAG
space, and others in order space.) We therefore run each
hill-climbing algorithm as many times as it can (restarting
at local minima), up to a fixed time limit of 10,000 family
fits (this value was chosen to give DAG search enough time
to explore at least one local minimum on the largest BNR
structure). Once again, we did not include the startup cost
of the initial pruning in these plots, since this is a small con-
stant relative to the overall cost of an extensive search. In
Figure 2(c), we show a trace of the MDL cost vs number of
family fits for different methods on the alarm network.

To compare results across datasets, we look at the final
performance after 10,000 steps. In Figure 3(a), we plot the
MDL cost as a function of the data set. We see that the
DAG+L1MB method is consistently the best or very close to
the best, except on the MNIST data. Due to its high number
of nodes, on the MNIST data set only the DAG+MMPC and

OrderL1 methods had reached a local minimum (with the
latter reaching a higher scoring local minima).

Although MDL is the objective function we are optimiz-
ing, often we care more about predictive performance. We
can measure this by negative log likelihood (NLL) on a test
set: see Figure 3(b). Here we see that good MDL scores cor-
relate with good predictive performance on the BNR data,
but that on the real data sets MDL was not always a good in-
dicator of predictive performance. In terms of test set NLL,
the OrderL1 tended to have the best performance overall10,
while DAG+L1MB tended to outperform, on average, the
remainder of the methods.

It is also interesting to look at the number of PDAG struc-
tural errors, the number of incorrect edges in the estimated
model compared to the true model. Again this is not the ob-
jective function that is being explicitly minimized, but itis
often what one we are interested in (especially given inter-
ventional data, when the DAG structural error can be driven
to zero). In Figure 3(c), we see that DAG+MMPC is the best
by this measure. However, since MMPC makes more false
negatives than L1MB (see Figure 2(a)), given more time we
would expect L1MB pruned methods to outperform MMPC
pruned methods.

Based on these search results, we observed that Order-
Search methods quickly achieve a high score by finding the
best DAG consistent with a random ordering. However, the
Order-Search methods subsequently make little progress. In
constrast, random DAGs generally have a very low score,
but DAG-Search makes significant progress and typically
reaches better local minima than Order-Search (see Fig-
ure 2(c)). We explored intializing DAG-Search by finding
the best DAG consistent with a random ordering (combining
the good properties of both approaches), and found that this
is more efficient than both DAG-Search and Order-Search
when the number of nodes is large (results omitted due to
space constraints).

Conclusions and future work
We have shown that L1 regression is a useful technique for
structure learning, whether for speeding up order search, or
for pruning the set of possible edges. We have omitted some
details due to lack of space. In our on-line report, we in-
cluded extended experimental results and additional details
on the different methods.

Although we have considered binary models that are lin-
ear in the parent values, in the future, we would like to
extend these techniques to handle multi-state discrete vari-
ables as well as modeling parent interactions and nonlinear
effects. All of these extensions will require group-L1 strate-
gies (e.g., (YM06)) since there will no longer be a 1:1 cor-
respondence between parameters and edges.

10In Figure 3(c), we see that OrderL1 does poorly in terms of
structural error, even though it does well in terms of NLL on real
data. We believe that OrderL1 is not able to prune edges very eas-
ily, since it cannot explore the space of graphs very well, but that
this actually helps its performance on real data, where having more
edges may help overcome the limited modeling power of using lo-
gistic CPDs.

References
[Ber99]D. Bertsekas.Nonlinear Programming: 2nd Edition.

Athena Scientific, 2000.
[BGdN06]O. Banerjee, L. El Ghaoui, A. d’Aspremont, and

G. Natsoulis. Convex optimization techniques for fit-
ting sparse gaussian graphical models. InIntl. Conf. on
Machine Learning, 2006.

[Chi96]D. Chickering. Learning Bayesian networks is NP-
Complete. InAI/Stats V, 1996.

[EJHT04]B. Efron, I. Johnstone, T. Hastie, and R. Tibshirani.
Least angle regression.Annals of Statistics, 32(2):407–
499, 2004.

[FK03]N. Friedman and D. Koller. Being Bayesian about
Network Structure: A Bayesian Approach to Structure
Discovery in Bayesian Networks.Machine Learning,
50:95–126, 2003.

[FNP99]N. Friedman, I. Nachman, and D. Peer. Learning
Bayesian network structure from massive datasets: The
”sparse candidate” algorithm. InUAI, 1999.

[HCM+00]D. Heckerman, D. Chickering, C. Meek, R. Rounth-
waite, and C. Kadie. Dependency networks for density
estimation, collaborative filtering, and data visualiza-
tion. J. of Machine Learning Research, 1:49–75, 2000.

[HGC95]D. Heckerman, D. Geiger, and M. Chickering. Learn-
ing Bayesian networks: the combination of knowledge
and statistical data.Machine Learning, 1995.

[LGK07]S.-I. Lee, V. Ganapathi, and D. Koller. Efficient
structure learning of Markov networks using L1-
regularization. InNIPS, 2007.

[LLAN06]S. Lee, H. Lee, P. Abbeel, and A. Ng. Efficient L1
Regularized Logistic Regression. InAAAI, 2006.

[LP96]P. Larrãnaga and M. Poza. Structure Learning of
Bayesian Networks by Genetic Algorithms: A Perfor-
mance Analysis of Control Parameters.IEEE Trans. on
Pattern Analysis and Machine Intelligence, 18(9):912–
926, 1996.

[LY05]Fan Li and Yiming Yang. Using modified lasso regres-
sion to learn large undirected graphs in a probabilistic
framework. InAAAI, 2005.

[MB06]N. Meinshausen and P. Buhlmann. High dimensional
graphs and variable selection with the lasso.The Annals
of Statistics, 34:1436–1462, 2006.

[Pea00]J. Pearl.Causality: Models, Reasoning and Inference.
Cambridge Univ. Press, 2000.

[PH06]M. Park and T. Hastie. L1 regularization path algorithm
for generalized linear models. Technical report, Dept.
Statistics, Stanford, 2006.

[Rob73]R. W. Robinson. Counting labeled acyclic digraphs.
In F. Harary, editor,New Directions in the Theory of
Graphs, pages 239–273. Academic Press, 1973.

[TBA06]I. Tsamardinos, L. Brown, and C. Aliferis. The max-
min hill-climbing bayesian network structure learning
algorithm.Machine learning, 2006. To appear.

[Tib96]R. Tibshirani. Regression shrinkage and selection via
the lasso.J. Royal. Statist. Soc B, 58(1):267–288, 1996.

[TK05]M. Teyssier and D. Koller. Ordering-based search: A
simple and effective algorithm for learning bayesian
networks. InUAI, pages 584–590, 2005.

[WRL06]M. Wainwright, P. Ravikumar, and J. Lafferty. Inferring
graphical model structure using`1-regularized pseudo-
likelihood. InNIPS, 2006.

[YM06]M. Yuan and Y. Lin. Model Selection and Estimation
in Regression with Grouped Variables.J. Royal. Statist.
Soc B, 68(19):49-67, 2006.

