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Supplementary Material

1. Theoretical Results

This is the expanded version of Section 3 from the
main paper that includes complete proofs.

In this section we make the connection between the
performance a K-classifier in the K-space and the per-
formance on the original problem precise. Thus justi-
fying the approach taken in this paper not only intu-
itively, but also from a theoretical standpoint. Specif-
ically, we bound the generalization error of an SVM
that uses the kernel induced by a K-classifier in terms
of the expected hinge loss and the margin of the K-
classifier in the K-space:

Theorem 1.1 Let P be a distribution on X x {£1},
Zgar and ty, be as in Equation 77, h be a K-classifier,
and R be a constant s.t. h(zy,) < R?> Vo € X. Let
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be the expected K-space hinge loss relative to margin ~y
of the K-classifier h. Then, with probability 1 — 9, a
classifier f with generalization error
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can be learned efficiently from a training sample of n
instances drawn IID from P.

The theorem follows from the two lemmas stated be-
low. The first lemma shows that a K-classifier that has
low expected hinge loss in the K-space will induce a
“good” kernel. The second lemma shows that a good
kernel allows for a classifier with low generalization
error to be efficiently learned from a finite training
sample. The following definition states formally what
we mean by a good kernel (Srebro, 2007).

Definition A kernel K is an (¢,v) good kernel in
hinge loss with respect to a distribution P on X x {£1}

1A kernel that does not satisfy this definition is not
necessarily a “bad” kernel. We just can not make any
formal statements with respect to its performance.

if there exist a classifier w € Hy with ||w|3, = 1 s.t.
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where H is the Hilbert space and ¢(-) is the feature
mapping corresponding to K.

Lemma 1.2 Let P, h, HLy,, R be as in Theo-

rem 1.1. Then the K, is a (HLp,7y/R) good kernel
in hinge loss with respect to P.

Proof Let w = E(wzwl)(y’(;;(z’)) € Hg, - We have:
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(Jensen’s inequality)
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To conclude the proof, we bound |Jw||4 by R:
[l = By [56@)] - By [9/0())]
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Lemma 1.3 Let K be an (¢,7) good kernel in hinge
loss, with K(x,2) < R?> Vo € X . Let (z;,y;)", be an
IID training sample, and f(x) = w - p(x) with
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be a kernel classifier that minimizes the average hinge
loss relative to v on the training sample. Then, with
probability at least 1 — 9, we have:

R? 111(1/5))
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Lemma 1.3 follows directly from Theorem 21 in
(Bartlett & Mendelson, 2002).

Thus, in the case of learning a linear combination of
kernels, with K;(x, ) < 1, the following generalization
bounds applies:

Corollary 1.4 Let h;,(235') = pt- 220 be a K-classifier
with ||p|l2 = 1. Then, with probability at least 1 — 9, a
classifier f with generalization error

Pla.y) [[yf(:v) < 0]] < HLp, - +0 ( P11;(21n/5)>

can be learned efficiently from a training sample of n
instances drawn IID from P.

Corollary 1.5 Let hy(232) = 1220 be a K-classifier
with ||p]|1 = 1. Then, with probability at least 1 — 6, a
classifier f with generalization error

f b
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can be learned efficiently from a training sample of n
instances drawn IID from P.

Note that, unlike in the one-stage kernel learning case,
the generalization bound in Theorem 1.1 is in terms of
the expected hinge loss of the K-classifier not the train-
ing hinge loss. While we are hopeful a generalization
bound for the classification problem in the K-space can
be obtained, as of now it remains an open problem.

We can, however, prove a concentration bound for the
expected hinge loss of a K-classifier. This is the analog
of the concentration bounds for target alignment in
(Cortes et al., 2010; Cristianini et al., 2001).2

Theorem 1.6 Let P, h, HLy,, R be as in Theo-
rem 1.1. Let (z;,y;)71 be an IID sample distributed
according to P. Then the following inequality holds

2This is not a regular generalization bound as the K-
classifier is not allowed to depend on the training sample.

with probability at least 1 — §
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Proof We will prove the concentration bound using
McDiarmid’s inequality (7). Let
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Let (x],y;) be a new sample drawn at random from P.
We have
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Where the last inequality comes from the fact that for
any (z,y) and (/,y')

0< |1

/f( / RQ
_ K@’
Y . v

Applying McDiarmid’s inequality gives
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The statement of the theorem is obtained by equating
the right side with §, and observing that for any i # j

E(Qfmyi)v(xwyj) ﬂ[l B J’Yj] ﬂ B
+
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which implies

E [[f((-rhyl)? T (mn’yn))]] =

tyy h(Ze,2)
= E(zy),('9) |H1 - ~y ] H
+
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