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ABSTRACT
Attribution of climate change to causal factors has been based pre-
dominantly on simulations using physical climate models, which
have inherent limitations in describing such a complex and chaotic
system. We propose an alternative, data centric, approach that re-
lies on actual measurements of climate observations and human and
natural forcing factors. Specifically, we develop a novel method to
infer causality from spatial-temporal data, as well as a procedure
to incorporate extreme value modeling into our method in order
to address the attribution of extreme climate events, such as heat-
waves. Our experimental results on a real world dataset indicate
that changes in temperature are not solely accounted for by solar
radiance, but attributed more significantly to CO2 and other green-
house gases. Combined with extreme value modeling, we also
show that there has been a significant increase in the intensity of
extreme temperatures, and that such changes in extreme tempera-
ture are also attributable to greenhouse gases. These preliminary
results suggest that our approach can offer a useful alternative to
the simulation-based approach to climate modeling and attribution,
and provide valuable insights from a fresh perspective.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms
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1. INTRODUCTION
Climate change is one of the most critical socio-technological

issues mankind faces in the present century [1]. Though it is re-
garded primarily as an energy related problem, computing technol-
ogy will play an important role in devising potential solutions in a
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variety of ways. One that particularly interests us is that of applying
data modeling to the climate data in order to better understand and
quantify the causal effects of various parameters involved. There
is a clear need for an effective methodology of data modeling that
will allow us to analyze the large amount of time series data on the
climate and climate forcing agents and draw conclusions on how
these factors affect each other and which parameters are to be con-
troled for the best environmental results.

It is well recognized that climate is a chaotic system, and hence
it is difficult to reliably model it as a whole. Nonetheless, there
are reasons to believe we can meaningfully characterize causal or
statistical relationships that exist among parameters of interest, and
make assertions about the presence or absence of such relationships
and quantify them. (Recently, there have been a number of articles
published in prominent scientific journals that carry out studies of
this type. [11, 15, 5]) Fundamentally, our goal is to focus on ‘cli-
mate change detection and attribution’ (i.e., identification, quantifi-
cation and prioritization of the effects of controllable forcing fac-
tors on climate), rather than on ‘climate projection’ (i.e., prediction
of the evolution of the global climate system in the next decades).

The climate system comprises complex relationships between a
large number of variables. Hence, the factors of interest involve
many dimensions, including measurements of climate parameters,
anthropogenic factors, and regional factors [2]. Fortunately, many
of these data are publicly available in forms that are well suited for
data modeling – e.g. Climate Research Unit (CRU) dataset, NOAA
NESDIS data set, Carbon Dioxide Info analysis Center (CDIAC).

Considerable amount of scientific investigations have been car-
ried out to date in the community of climate change study, to ad-
dress these very questions [11]. The dominant existing approach in
the community, however, is based on forward simulation with cli-
mate models built using fundamental physical laws. These models
are used to estimate the expected space-time pattern (fingerprints)
of the response to individual anthropogenic or natural forcing fac-
tors on the observed climate. The task of detection and attribution
is then performed by estimating the factors by which these model-
simulated patterns have to be scaled to be consistent with the ob-
served change (optimal fingerprinting), and by applying standard
statistical significance tests for isolated hypotheses on the value of
the estimated factors. As these existing approaches rely heavily
on the employed climate models, they are subject to the models’
shortcomings (e.g. models’ uncertainties, simplifications, and dis-
crepancies from observed data).

Given the understanding of the existing approaches and their lim-
itations, what we propose is an alternative approach based on data
modeling, with special attention paid to address unique character-
istics of climate modeling. First has to do with our emphasis on
attribution, rather than forecasting, of climate change, motivating



us to look to techniques that aim at modeling causality. Secondly,
the climate data are spatio-temporal in nature, where both the cli-
mate observations and forcings are associated with specific points
in space and time, and these aspects will be critical for conducting
informed analyses on climate change over time and across regions
over the globe. Thirdly, there is a particular interest in modeling
the extreme climate events, such as the frequency and severity of
heatwaves and floods, beyond just the change in the mean climate
behavior [15, 5].

To address the modeling challenge described above, we develop
and employ methods of ‘spatial temporal causal modeling,’ which
allow us to model causal relationships between time and space-
persistent features, given spatio-temporal data. More specifically,
we develop a spatio-temporal version of the so-called ‘graphical
Granger modeling methods,’ which is an emerging collection of
methods that combine the graphical modeling techniques with the
notion of ’Granger causality’ to derive effective methods for causal
modeling based on time series data. Here ‘Granger causality’ is
an operational definition of causality from econometrics, which is
based on the premise that ‘a cause necessarily precedes its effects,’
and its adoption to graphical modeling allows us, to model causal
relationships between a large number of time series variables.

Specifically, we develop a novel method we call “Group Elas-
tic Net”, which can address the spatio-temporal aspect of climate
modeling, and use it as our primary modeling methodology. This
algorithm incorporates the spatio-temporal structure in the data in
the variable selection process of the regression procedure under-
lying graphical Granger modeling. That is, the lagged variables
from different time steps for the same feature are grouped together
and the penalty function used in variable selection is modified so
as to enforce sparsity at the group level, rather than at the level of
the individual lagged variables. Additionally, the spatial smooth-
ness is enforced by an additional penalty term that encourages sim-
ilarity between coefficients for spatial neighbors. This formulation
leads to a grouped version of the so-called “elastic net” problem,
for which we devise an efficient solution.

One potential weakness of a data centric approach to climate
modeling is the lack of sufficient past data on extreme events, which
may pose difficulties in modeling and attributing such events. Here
we develop a dynamic modeling method by applying the theory
of extreme event and value modeling. Extreme-value theory [3]
provides a natural family of probability distributions for model-
ing the magnitude of the largest or smallest of a large number of
events, and a canonical stochastic process model ([7], sec. 7.3) for
the occurrence of rare events, those whose magnitude exceeds a
very high (or very low) threshold. The stochastic process model
involves three parameters, which specify the rate of occurrence of
extreme events and the distribution of the magnitude of events that
exceed a threshold. We treat these parameters as varying over space
and time and we model their variation by means of a Bayesian hi-
erarchical model in which the parameters are regarded as random
variables. The outputs of the model are a posteriori estimates of
the parameters at potentially all locations in space and time. From
these outputs we can estimate the spatial and temporal variation
of properties of the distribution of annual extremes. In particular
we look for evidence of climate change in the temporal variation
of our estimates of the “N -year event”, the event magnitude that
occurs on average once every N years.

The relationship between extreme event modeling and graphi-
cal Granger modeling has been underexplored in the literature to
date. In the present work, we employ a relatively simple approach
to combining the two: using our Bayesian hierarchical model we
estimate the N -year event magnitudes associated with the climate

metrics of interest, and we incorporate these estimated variables as
additional variables in causal modeling and attribution in the spatio-
temporal modeling with the grouped elastic net algorithm described
above. The choice of N -year event magnitudes as a proxy of ex-
treme temperature is, in part, motivated by the fact that they are typ-
ically approximated using normal distributions , which is consistent
with our causal modeling method, using linear Gaussian models as
component models of conditional distributions.

We evaluate our proposed approach with two sets of experiments:
In the first set of experiments, we use simulated spatio-temporal
data to demonstrate the advantage of the proposed spatial-temporal
modeling method based on group elastic net, as compared to meth-
ods that do not take advantage of the spatial aspects of the data.
In the second, and main, set of experiments, we use our developed
methods to model real climate data, focusing on the data for the
last couple of decades in the North American region. We collected
and processed a wide range of climate related data for these space
and time ranges, including the climatological observations, natural
forcings (e.g. solar radiance), as well as greenhouse gas measure-
ments. The results we obtained to date include: 1) Spatio-temporal
causal modeling attributes the change in the temperature signifi-
cantly to that of CO2 and other greenhouse gases, even in the pres-
ence of solar radiance; 2) Extreme value modeling confirms that
the intensity of extreme weather events, such as unseasonably hot
summer days and warm winter days, have significantly increased
between the years of 1982 and 2001; 3) The combination of the two
approaches indicate that, for the N -year return level of temperature
as well, CO2 and other greenhouse gases are attributed even in the
presence of, and with greater significance than, the solar radiance.

2. METHODOLOGY

2.1 Spatio-temporal Causal Modeling

2.1.1 Preliminaries: Graphical Granger Modeling
We briefly review the notion of “Granger Causality” [9], which

was introduced by the Nobel prize winning economist, Clive Granger,
and has proven useful as an operational notion of causality for time
series analysis in econometrics. It is based on the idea that if a time
series variable causally affects another, then the past values of the
former should be helpful in predicting the future values of the latter,
beyond what can be predicted based only on their own past values.

More specifically, a time series x is said to “Granger cause” an-
other time series y, if regressing for y in terms of past values of y
and x is more accurate with statistical significance, as compared to
regressing just with past values of y. Let {xt}T

t=1 denote the time
series variables for x and {yt}T

t=1 the same for y. The so-called
Granger test first performs the following two regressions:

yt ≈
L∑

l=1

aj · yt−l +
L∑

l=1

bj · xt−l (1)

yt ≈
L∑

j=1

aj · yt−j (2)

where L is the maximum “lag” allowed in past observations, and
then applies a statistical test to determine whether or not (1) is more
accurate than (2), with statistical significance.

The notion of Granger causality, as reviewed above, was de-
fined for a pair of time series variables. Now in the context of cli-
mate modeling, we are actually interested in cases in which there
are many variables present as opposed to a pair, and each one is



a spatio-temporal variable as opposed to a time series variable;
and we wish to determine the causal relationships between them.
Hence, the notion of Granger causality needs to be appropriately
extended to incorporate the spatial dimension. Let us, for any mea-
surement or feature over time and space (e.g. temperature, CO2,
etc), use variables (e.g. x) to refer to the entire spatio-temporal se-
ries, and use indexed variables (e.g. xt,s) to denote the associated
individual spatially and temporally lagged variables.

For convenience, we assume that the measurements are sampled
along a regular spatial grid. Similarly to the notion of maximum
temporal lag, one may consider a maximum “spatial lag” and sup-
pose that each point is influenced by a finite neighborhood around
it. Let N(s) denote the set of points in the neighborhood of s. We
assume that the neighborhood structure is identical for each grid
point, and thus consider neighborhoods of the form N(s) = s+Ω,
where Ω = {ω1, . . . , ωK} is a set of “relative locations”.

Now, the extended Granger causality notion is defined in terms
of the following two regressions:

yt,s ≈
∑

ω∈Ω

L∑

l=1

al,ω · yt−l,s+ω +
∑

ω∈Ω

L∑

l=1

bl,ω · xt−l,s+ω (3)

yt,s ≈
∑

ω∈Ω

L∑

l=1

al,ω · yt−j,s+ω (4)

The above, simplified, scheme is symmetric with respect to time
and space, but there is a difference between space and time that
calls for a refinement of this formulation.

For applying Granger causality to many variables, or measure-
ments, there is a collection of methods, known as graphical Granger
modeling, which combines methods of graphical modeling with
the notion of Granger causality. A particularly relevant approach
is that of applying regression algorithms with variable selection to
determine the causal links for each variable. Lasso [14] is a prime
example, which trades off the minimization of the sum of squared
errors and that of the sum of the absolute values of the regression
coefficients in the penalty term.

Consider N measurements xi (i = 1, . . . , N) (e.g. tempera-
ture, pressure, etc.). For each such measurement xi, denote by xi

t,s

its sample at time t and location s. For any given measurement xi,
one can view the variable selection process in the regression for
xi

t,s in terms of x1
t−l,s+ω ,. . . ,xN

t−l,s+ω l = (1, . . . , L),ω ∈ Ω, as
an application of the Granger test on xi against x1, . . . , xN . By
extending the pairwise Granger test to one involving an arbitrary
number of spatial-temporal series, it makes sense to say that xj

Granger causes xi if xi
t−l,s+ω is selected for any time and spatial

lags l, ω in the above variable selection process.
A critical aspect that is worth emphasizing, and is overlooked

in most of the existing methods in the literature, is that the ques-
tion we are interested in is whether an entire series {xj

t−l,s+ω, l ∈
{1, . . . , L}, ω ∈ Ω} provides additional information for the pre-
diction of xi

t,s, and not whether for specific time and spatial lags
l, ω xj

t−l,s+ω provides additional information for predicting xi
t,s.

Therefore, a faithful instantiation of Granger causal modeling, in
the context of spatial-temporal modeling, should take into account
the group structure imposed by the spatial-temporal series into the
fitting criterion that is used in the variable selection process.

The foregoing discussions naturally lead to the proposal of our
novel method, “group elastic net”, which addresses both the issue
of “grouping” the lagged variables for the same feature, and that of
the smoothness desired for the spatial dimension.

Spatial-Temporal Causal Modeling

1. Input: Measurement data {xt,s}t=1,..,T, s∈S where each xt,s is a
N -dimensional vector of measurements taken at time t and location
s.
Input: A regression method with group variable selection, REG.

2. Initialize the adjacency matrix for the N measurements, i.e. G =
〈V, E〉 where V is the set of N measurements (e.g. by all 0’s).

3. For each measurement xi ∈ V , run REG on regressing for xi
t,s

in terms of the past lagged variables, xj
t−l,s+ω , j ∈ 1, . . . , N ,

l ∈ 1, . . . , L, ω ∈ Ω. For each measurement xj ∈ V place an edge
xj → xi into E, if and only if xj was selected as a group by REG.

Figure 1: Generic Spatial-Temporal Causal Modeling Method

2.1.2 Spatio-temporal Granger Modeling via Group
Elastic Net

The generic spatio-temporal causal modeling method we described
in the foregoing section is given in Figure 1. We now describe
the variable selection procedure which we propose to use as an in-
stance of the REG procedure in Step 3 of our algorithm. We as-
sume “spatial stationarity”, i.e., that the same model applies to each
point on the grid (relaxing this assumption will be the object of fu-
ture work). More precisely, we consider regression coefficients of
the form βk

l,ω where k is the measurement (e.g. temperature), l is
the time lag, ω is the relative location between the point considered
and a point in its neighborhood.

Let S be the set of (interior) locations s such that for each ω ∈
Ω s + ω is a point of the grid (and not outside the grid). Let,
t = 1, . . . , T be the time points considered.

For a given measurement xi, we propose to use the following
penalized regression model to determine which spatial-temporal se-
ries xj (j = 1, . . . , N ) Granger-cause xi.

β̂ = arg min
β

∑

s∈S

T∑

t=L+1

(xi
t,s −

N∑

j=1

L∑

l=1

∑

ω∈Ω

βj
l,ωxj

t−l,s+ω)2

+λ2

N∑

j=1

L∑

l=1

(βj
l, : )T ∆̃jβ

j
l, :

︸ ︷︷ ︸
SpatialPenalty

+λ1

N∑

j=1

‖βj
: ‖∆j

︸ ︷︷ ︸
SparsityPenalty

, (5)

where βj
l,: = vect(βj

l,ω)ω∈Ω, βj
: = vect(βj

l,ω)l=(1,...,L),ω∈Ω,

∆j =





∆̃j 0 0 0
0 ∆̃j 0 0

0 0
. . . 0

0 0 0 ∆̃j




,

and ‖y‖∆j = (yT ∆jy)1/2.
The role of the “spatial penalty” is to enforce spatial regular-

ization. Specifically the matrix ∆̃j is meant to enforce spatial
smoothness as well as some form of distance-based coefficient de-
cay. Namely the regression coefficients are penalized more as they
correspond to increasingly distant neighborhood locations. For in-
stance, ∆̃j could be a diagonal matrix such that the diagonal entry
corresponding to βj

l,ω equals ‖ω‖.
The “sparsity penalty” is a group Lasso penalty [16], which im-

poses sparsity across measurements. More precisely, the regression
coefficients corresponding to spatial-temporal samples of the same



measurement are penalized as a group, namely through ‖βj
: ‖∆j .

Then l1 norm of
(
‖β1

: ‖∆j , ‖β2
: ‖∆j , . . . , ‖βN

: ‖∆j

)
imposes that

the coefficients corresponding to a given measurement are either
included as a group in the model or excluded. Note that the depen-
dence in j of ∆̃j and ∆j is due to the fact that we may consider
different regularization matrices for different measurements.

Let Y be the vector of length (T−L+1)|S| formed by xi
t,s, t =

(L, . . . , T ), s ∈ S. Consider the spatially and temporally lagged
matrix X of dimension ((T − L + 1)|S|) × (NL|Ω|) such that
the row corresponding to the pair (t, s) is the vector formed by
xj

t−l,s+ω, j = (1, . . . , N), l = (1, . . . , L), ω ∈ Ω. Let β be the
corresponding vector of regression coefficients, i.e. β is of length
length NL|Ω| formed by βj

l,ω, j = (1, . . . , N), l = (1, . . . , L), ω ∈
Ω. Denote by βj the restriction of β to the elements correspond-
ing to measurement xj , i.e βj is the vector formed by βj

l,ω, l =
(1, . . . , L), ω ∈ Ω. Then Eq. 5 can be rewritten as

β̂ = arg min
β

L(λ1, λ2, β)

= arg min
β
‖Y −Xβ‖2 + λ2

N∑

j=1

‖βj‖2∆j
+ λ1

N∑

j=1

‖βj‖∆j .

Notice that the above formulation resemble a “group version” of
the Elastic net problem [17], hence we call it the Group Elastic Net.

The following proposition states that the Group Elastic Net prob-
lem can be transformed into a group Lasso problem, and hence can
be efficiently solved using existing algorithms.

PROPOSITION 2.1. Assume that ∆j (j = 1, . . . , N) is positive
definite, let ∆j = ST

j Sj . Let Aj = (ST
j Sj)

−1ST
j , and

C =





A1 0 0 0
0 A2 0 0

0 0
. . . 0

0 0 0 AN




.

The Group Elastic Net problem solution

βGEN = arg min
β
‖Y −Xβ‖2 +λ2

N∑

j=1

‖βj‖2∆j
+λ1

N∑

j=1

‖βj‖∆j

(6)
can be obtained by solving the Group Lasso problem

βGL = arg min
β
‖Ŷ − X̂β‖2 + γ

N∑

j=1

‖βj‖2,

where γ = λ1√
1+λ2

, Ŷ =

(
Y

0(p)

)
, X̂ = 1√

1+λ2

(
XC√
λ2I

)

and where p is the number of columns of X , and setting βj
GEN =

1√
1+λ2

∆−1
j ST

j βj
GL.

PROOF. Let X̃ = XC and β̃j = Sjβ
j . Then solving Eq. 6 is

equivalent to solving

min ‖Y − X̃β̃‖2 + λ2

N∑

j=1

‖β̃j‖22 + λ1

N∑

j=1

‖β̃j‖2

= min ‖Y − X̃β̃‖2 + λ2‖β̃‖2 + λ1

N∑

j=1

‖β̃j‖2 (7)

Set γ = λ1√
1+λ2

, and β̂ =
√

(1 + λ2)β̃.. Then solving Eq. 7 is
equivalent to solving

min ‖Y − 1√
(1 + λ2)

X̃β̂‖2 +
λ2

1 + λ2
‖β̂‖2 + γ

N∑

j=1

‖β̂j‖2 (8)

Let p = NL|Ω|, i.e, p is the number of columns of X̂. Let q =
(T−L+1)|S|, i.e, q is the length of Y and also the number of rows

of X̃. Let Ŷ(q+p) =

(
Y

0(p)

)
, and X̂(q+p)×p = 1√

1+λ2

(
X̃√
λ2I

)
.

Then the problem is equivalent to solving
min ‖Ŷ − X̂β̂‖2 + γ

∑J
j=1 ‖β̂

j‖2
which is the Group Lasso formulation.

Similar to [17], the penalty parameters are tuned as follows. We
consider a set of candidate parameters Λ2 for λ2, (for instance
Λ2 = (0, 0.01, 0.1, 1, 10, 100)). For each λ2 ∈ Λ2 we run the
equivalent Group Lasso algorithm for γ ∈ Γ, where Γ is a set of
candidate parameters for γ (e.g. Γ = (0, 0.01γmax, 0.1γmax, γmax),
where γmax is a value which is so high that no group gets selected.)
Then we pick the pair (λ∗2, γ

∗) = arg min BIC(λ2, γ), where

BIC(λ, γ) =
‖Ŷ − X̂βGL(λ2, γ)‖2

nσ2
+ (log(n)/n)dfGL(λ2, γ),

(9)
where dfGL is the degrees of freedom estimate for Group Lasso as
proposed by [16], i.e.,

dfGL(λ, γ) ≈
N∑

j=1

I(‖β̂j‖2 > 0) +
N∑

j=1

‖β̂j‖
‖β̂j

OLS‖
,

where β̂ = β̂GL(λ, γ) and β̂OLS is the ordinary least squares solu-
tion when using all the variables.

2.2 Extreme Value Modeling

2.2.1 Preliminaries: Extreme Value Modeling
We now give a brief review of extreme value theory [7]. We will

show that a natural statistical model for the occurrence of extreme
events is a Poisson point process that yields a generalized extreme
value (GEV) distribution for the magnitude of the largest event in
a fixed time period and a generalized Pareto distribution (GPD) for
the amounts by which the magnitudes of extreme events exceed a
specified threshold.

Let X1, · · · , Xn be a sequence of independent and identically
distributed random variables, and let Mn = max{X1, · · · , Xn}.
If there exist sequences of constants an > 0 and bn such that

Pr

(
Mn − bn

an

)
→ G(z) as n→∞ , (10)

for some nondegenerate distribution function G, then G is a gener-
alized extreme value distribution, with distribution function

G(z) = exp

{
−

[
1 + ξ

( z − µ
σ

)]−1/ξ

+

}
, (11)

defined on {z : 1+ξ(z−µ)/σ > 0}, with−∞ < µ < ∞, σ > 0,
and −∞ < ξ < ∞.

If the limiting distribution (11) exists, then, for a large thresh-
old u, the exceedance Y = X − u, conditional on X > u, is well
approximated by a generalized Pareto distribution

H(y) = Pr (X > u + y|X > u) =

(
1 +

ξy
σ̃

)−1/ξ

, (12)

defined on {y : y > 0 and (1 + ξy/σ̃) > 0}, where

σ̃ = σ + ξ(u− µ) .

The parameters of the generalized Pareto distribution of threshold
excesses are uniquely determined by those of the associated GEV
distribution of block maxima.



These results provide two approaches for statistical modeling of
extreme values. The block maxima (e.g. annual maxima of mete-
orological variables) can be modeled as independent observations
from a GEV distribution, or the excesses over a high threshold can
be modeled by a GPD. Both approaches have weaknesses. The
GEV approach uses only one observation per block, which may
be wasteful if more data than just the block maxima are available.
In the GPD approach, the probability of exceeding the threshold
is not available. These weaknesses can be overcome by formulat-
ing the behaviour of extreme events using a Poisson point process.
This encompasses the GEV and GPD models and the process is
completely defined by the same parameters that describe GEV dis-
tribution of block maxima. The model leads directly to a likelihood
that enables a natural formulation of nonstationarity in threshold
excesses, for example by including spatio-temporal correlation.

A point process on a set A is a stochastic rule that describes the
occurrence and position of point events. For a set A ⊂ A, we define
the non-negative integer-valued random variable N(A) to be the
number of points in the set A. In a Poisson process the occurrence
of events at different points a ∈ A is statistically independent and
N(A) has a Poisson distribution,

N(A) ∼ Poi(Λ(A)) , (13)

with

Λ(A) =

∫

A

λ(a) da , (14)

where the intensity function λ(a), a ∈ A, indicates the relative
frequency of occurrence of events at different locations in A. In
extreme-value modeling the set A has the form (−∞, +∞) ×
[u,∞), the two components respectively indicating time and event
magnitude. The intensity function is

λ(t, x) = σ−1
[
1 + ξ

x− µ
σ

]−1/ξ−1

, (15)

which yields distributions of block maxima and of excesses over
threshold u that have the forms (11) and (12) respectively.

2.2.2 Spatio-Temporal Point Process
Since the statistical characteristics of extreme climate data vary

over space and time, the model specified by (13)–(15) cannot be
used directly. We have therefore developed a more general version
of the model, a spatio-temporal point process in which the location
parameter µ and scale parameter σ are permitted to vary over space
and time, and the threshold u varies over space.

To incorporate spatial and temporal correlation among the data,
we build a hierarchical Bayesian spatio-temporal dynamic model
[4]. This modeling strategy involves three stages. The first stage
is the data model which models only observation process given a
latent process. Stage 2 specifies the latent process; in our case,
this is a Poisson point process and incorporates spatio-temporal de-
pendence structures that are much more complicated than could
be specified directly. In stage 3 we specify prior distributions for
the parameters occurring in stage 2; here we can include external
knowledge and expert opinion.

Let Xi
s,t be the ith exceedance over threshold us at location s

in year t, where i = 1, . . . , ns,t, s = 1, . . . , S and t = 1, . . . , T .
In the observation process, the likelihood function of the Poisson

point process can be written as

L(µs,t, σs,t, ξ; X
1
s,t, . . . , X

ns,t
s,t , s = 1, . . . , S, t = 1, . . . , T )

∝
T∏

t=1

S∏

s=1

exp

{
−

[
1 + ξ

(
us − µs,t

σs,t

)]−1/ξ
}

×
N∏

i=1

σ−1

[
1 + ξ

(
xi

s,t − µs,t

σs,t

)]−1/ξ−1

, (16)

where µs,t and σs,t are varied over space and time.
In the process model, we model the location parameter µs,t through

a dynamic linear model and σs,t is modeled in the same procedure:

µt = Bµ
s θµ

t + εµ
t , (17)

where µt = (µ1,t, . . . , µS,t)
′ at time t. θµ

t , a K × 1 vector, is
called state vector. Bµ

s in (17), is a S × K matrix which can re-
duce the spatial dimension from S to K (K < S). We choose Bs

as a Matern kernel with fixed smoothness parameter [12]. εt is a
random Gaussian process to include systematic error.

θµ
t = Γµθµ

t−1 + ωt, (18)

where Γµ in the transition equation is specified through an AR(1)
process.

In stage 3, we assign noninformative priors to all the parameters.
Given the data model (16), the process model (17) and (18), and
the prior process, we can derive the posterior distribution. Markov
Chain Monte Carlo (MCMC) algorithm can be used to draw sam-
ple from the full conditional distributions. The full conditional dis-
tributions of the variance parameters which characterize the ran-
dom process εµ

t and ωµ
t are inverse gamma distributions and can

be drawn through Gibbs sampler. Some full conditional distribu-
tions of the parameters, such as µt and the temporal correlation pa-
rameters in Γµ, are hard to sample directly, and hence Metropolis-
Hasting algorithm is used. θt are jointly sampled by forward filter-
ing backward sampling (FFBS) algorithm [6]. After obtaining the
MCMC samples, we can make inferences for the parameters in the
model. We drew 15,000 samples and discarded the first 5,000. The
chains were thinned by choosing every 10th samples to reduce the
correlation. So 1,000 samples for each chain were left for analysis.
Convergence was checked on trace plots of posterior samples.

It is usually more convenient to interpret extreme value models in
terms of return levels, rather than individual parameter values. Let
zm be the return level associated with the return period m years;
zm is the level exceeded by the annual maximum in any particular
year with probability 1/m. Statistically, the return level is the 1/m
upper quantile of generalized extreme distribution. Let n be the
number of observations in a year, and zm satisfies the equation

n log p = log(1− 1/m),

where

p = 1− n−1 [1 + ξ(zm − µs,t)/σs,t]
−1/ξi ,

if [1 + ξ(zm − µs,t)/σs,t] > 0, otherwise p = 1. Here µs,t, σs,t,
and ξ are the parameters of the point process for year t and location
s. This equation can be solved for zm using standard methods.

3. DATA
The mere amount of publicly available climate data is outright

staggering. There are a large number of governmental and scien-
tific institutions who publish measurements for a given geograph-
ical range on a multitude of relevant variables on the Web. This
being said, it is nevertheless a major challenge to obtain consistent
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Figure 2: Data collection and pre-processing

longitudinal records that cover with comparable temporal and spa-
cial resolution all relevant variables. Another problem is the large
variety of formats in which data are available.

3.1 Data Sources and Collection
We compiled a comprehensive set of relevant variables for cli-

mate modeling in North America. Aside from the primary climate
variables that we eventually wish to explain, the literature distin-
guishes human and natural agents or forcings that are known to
affect the climate. These include solar irradiance and volcanic ac-
tivities, greenhouse gases and aerosols (small particles dispersed in
air). Figure 2 shows a schematic view of the data collection and
preparation process. Table 1 lists the variables that we used in our
analysis. We note that the “temperature extreme” variable is to be
distinguished from all the others, in that they are estimated, using
the extreme value modeling technique described in the previous
section. We used for this study data from the following 5 sources:

1) CRU: Climate Research Unit provides monthly climatology
data at http://www.cru.uea.ac.uk/cru/data for 11 surface variables
including precipitation, wet-day frequency, mean, max, min tem-
perature, vapor pressure, relative humidity, sunshine percent, cloud
cover, frost frequency, wind speed from 1901 to present on a 0.5
degree latitude and longitude resolution. This grid data was inter-
polated from station data as a function of latitude, longitude, and
elevation using thin-plate splines by New et al.[13]

2) NOAA: The data center http://www.cdc.noaa.gov/data/gridded/
of the National Oceanic and Atmospheric Administration is consid-
ered the ”World’s largest archive of climate data”. We downloaded
the greenhouse data from 170 worldwide stations from http://
www.esrl.noaa.gov/gmd/dv/ftpdata.html.

3) NASA: NASA uses satellite images to estimates of the ambi-
ent aerosol optical thickness based on the resulting ultra-violet irra-
diation. We collected this data from http://iridl.ldeo.columbia.edu/
SOURCES/.NASA/ .GSFC/.TOMS/.NIMBUS7/.

4) NCDC: The National Climate Data Center was our source
for the different solar radiation measurements in 997 different lo-
cations at http://rredc.nrel.gov/solar/old_data/nsrdb/.

5) CDIAC: Daily temperature data are obtained from U.S. his-
torical climatology network (http://cdiac.ornl.gov/epubs/ndp/ushcn/
usa.html). The data of daily maximum temperature were collected
from year 1948 to 2005 at 351 stations in U.S. We cleaned the data
by removing invalid temperature observations.

3.2 Data Pre-Processing
The preparation of the data for the modeling involved a number

of steps:
1) Normalization: Initially we transformed each dataset into

monthly observations in a standard format including longitude, lat-
itude, altitude, date, variable, value, unit, and source.

Variables (Variable group) Type Source
Methane (CH4) Greenhouse NOAA
Carbon-Dioxide (CO2) Gases
Hydrogen (H2)
Carbon-Monoxide (CO)
UV (AER) Aerosol Index NASA
Temperature (TMP) Climate CRU
Temp Range (TMP)
Temp Min (TMP)
Temp Max (TMP)
Precipitation (PRE)
Vapor (VAP)
Cloud Cover (CLD)
Wet Days (WET)
Frost Days (FRS)
Global Horizontal (SOL) Solar NCDC
Direct Normal (SOL) Radiation
Global Extraterrestrial (SOL)
Direct Extraterrestrial (SOL)
1-year return level for Climate Estimated
temperature extreme using temp
(TMP.EXT) from CDIAC

Table 1: Variables and data sources.

2) Interpolation and Smoothing: We interpolated the data from
NOAA and NCDC into a common 2.5x2.5 degree grid for North
America to allow us to join multiple data sources. For this process
we used thin plate splines on the monthly data to be consistent with
the interpolation method used for the CRU data. Since the data
from NASA and CRU were provided for a finer resolution grid,
we performed spatial averaging to get data on the common 2.5x2.5
degree grid.

3) De-seasonalization: We performed de-seasonalization by re-
moving seasonal averages.

4. EXPERIMENTS
As we noted in Introduction, we conduct two sets of experiments,

one involving generic spatio-temporal data that are simulated from
an artificial model, and the other involving the actual climate data
we described in the previous section. The experiments involving
real climate data consist of the following steps: 1) Using spatio-
temporal extreme value modeling technique to estimate the 1-year
return levels (1-year event magnitudes) of temperature; 2) Incor-
porating the estimated 1-year return levels as a proxy for extreme
temperature in the spatio-temporal causal modeling using Group
Elastic Net.

In the subsequent subsections, we describe the details of these
experimental procedures and their results.

4.1 Simulation Experiments
We performed two sets of experiments on synthetic data to eval-

uate the performance of “Group Elastic Net” (which takes into ac-
count spatial interactions through spatial lagging and appropriate
penalization in the regression), against that of a method that ne-
glects such interactions and considers instead that a measurement at
location s is only affected by variables at the same location. Specif-
ically, the comparison method solves the following group Lasso



problem for each measurement xi.

β̂ = arg min
β

∑

s∈S

T∑

t=L+1

(xi
t,s −

N∑

j=1

L∑

l=1

βj
l xj

t−l,s)
2

+λ
N∑

j=1

(
L∑

l=1

(βj
l )2

)1/2

. (19)

We generated synthetic spatial-temporal data using a spatial-temporal
vector autoregressive (VAR) model as generative model. More
specifically, we considered N = 10 measurements x1, . . . xN ,
taken on a 15 × 15 spatial grid. For each (interior) point s =
(s1, s2) we consider the neighborhood structure Ω = {(ω1, ω2) ∈
{−2,−1, 0, 1, 2} × {−2,−1, 0, 1, 2}. We set the maximum lag
L = 3. Let xt,s denote the vector formed by all the measurements
xi

t,s, i = 1, . . . , N. We considered the following generative model.

xt,s =
L∑

l=1

∑

ω∈Ω

Al,ωxt−l,s+ω + η.

The matrices Al,ω where generated as follows. We first generated
an N × N adjacency matrix A, where the entry A[i, j] = 1 indi-
cates that xi causes xj , and A[i, j] = 0 otherwise. The value of
each entry was chosen by sampling from a binomial distribution,
where the probability that an entry equals to one was set to 0.2.

For the first set of experiments, we use a setup we call “ran-
dom coefficient weighting.” That is, for each pair (l, ω) and each
i, j, we set Al,ω[i, j] = cl,ω(i, j) · A[i, j], where cl,ω(i, j) ∼
Unif(−0.1, 0.1). For the second set of experiments, we use a dif-
ferent setup we refer to as “decaying coefficient weighting”, which
is meant to represent situations where the influence decays with
the distance. Formally, we first focus on the central location ω0 =
(0, 0), and for each l and each i, j, we set Al,ω0 [i, j] = cl,ω0(i, j) ·
A[i, j], where cl,ω0(i, j) ∼ Unif(−0.1, 0.1). Then for each pair
(l, ω ,= ω0), for each i, j we set Al,ω[i, j]=

(
cl,ω0 (i,j)

1+‖ω‖ + η̃
)
A[i, j],

where η̃ is some random noise ∼ Uniform(−0.01, 0.01).
For both sets of experiments the noise η was sampled according

to a normal distribution N (0, 0.01). For each setup, we generated
10 models, and for each model simulated data for 100 time points.
For Group Elastic Net, we used ∆̃j = I for the first set of experi-
ments, and ∆̃j = diag(exp(‖ω‖/2), ω ∈ Ω) for the second (since
in practice one may not know the exact type of distance based de-
cay, e.g polynomial, exponential).

We measure the accuracy of each method with respect to their
ability to correctly identify the underlying adjacency matrix A. We
report the average F1 score along with standard deviation. The F1

score is defined as F1 = 2 PR
P+R , where P is the precision and R

the recall. The results are reported in Table 2. Under both settings,
Group Elastic Net exhibits higher accuracy than the comparison
method, and the difference in accuracy is greater for the “decaying
coefficient weighting”. This illustrates the importance of taking
spatial interactions into account in the modeling.

Method Grp Lasso Grp Elastic Net
Random coef 0.53± 0.01 0.60± 0.01
Decaying coef 0.49± 0.02 0.67± 0.01

Table 2: The accuracy (F1) of two comparison methods: Group
Lasso (no spatial interaction) and Group Elastic Net for spatial
temporal VAR models with random and decaying coefficient
weighting.
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Figure 3: A comparison of average return levels from 1948 to 1980
and from 1981 to 2005.

4.2 Modeling extreme temperature
We used the daily temperature data from CDIAC for modeling

extreme temperature. To obtain the exceedances over a thresh-
old required for the modeling, we calculated the 95th quantile of
the temperature distribution over the 58 years at each location and
chose the observations which exceed the location-specific thresh-
old. We removed the stations which have very few years with at
least 2 exceedances. Thus the data used for our model are the daily
maximum temperature exceedances for 58 years at 254 stations.

As discussed in Section 2.2.2, we interpret the extreme value
analysis through return levels. We obtained the return level for
years from 1948 to 2005 and each of the 254 stations. To investigate
the evidence of global warming, for each station, we calculated the
average return levels from 1948 to 1980 and from 1981 to 2005 and
compared if there is any increase in terms of return level for these
two periods. Figure 3 gives the return level difference which indi-
cates the return levels increase over the past 58 years in midwest,
western and eastern coastal areas of the United States. We observe
a clear trend that the difference is mostly positive, with some of the
regions exhibiting as much as 5 degrees Fahrenheit increase during
this period.

4.3 Spatio-temporal modeling and attribution
We applied our spatio-temporal causal modeling method on two

datasets: one monthly, the other yearly. Both contain data for 1990-
2002 on a 2.5x2.5 degree grid for latitudes in (30.475, 50.475),
and longitudes in (−119.75,−79.75). The monthly dataset con-
tains the first 19 variables listed in Table 1. The annual dataset
contains in addition the estimated return levels for the extreme tem-
perature. Having two different time resolutions allows us to inves-
tigate short term and longer term influences. Note that since the
return levels were estimated yearly, we did not incorporate them
into the monthly dataset (Estimating monthly return levels will be
the object of future work.)

For the spatial-temporal causal modeling, we used a 3x3 spatial
neighborhood structure and a maximum time lag of 3 months for
the monthly data, and 3 years for the yearly data. In our modeling,
we considered the temperature variables as a group (TMP), as well
as the solar variables (SOL), in addition to the natural grouping
structure by spatial temporal series.



Figure 4 shows the results of attributing the changes in return
level for extreme temperatures using the yearly dataset, while Fig-
ures 5 and 6 show the results on attributing the changes in temper-
ature, using respectively the yearly and the monthly dataset. In as-
sessing the strength of causal links identified in our outputs, we use
two separate metrics. One is the l2- norm of the regression coef-
ficients corresponding to the variable group in question, which co-
incides with its contribution to the spatio-temporal penalty term in
the Group Elastic Net modeling. The other is the point at which the
causal link in question appears in the output graph, as the parame-
ter dictating how much emphasis is placed on the model complexity
penalty in BIC is varied. This is done by multiplying the estimated
noise variance in the penalty term (σ2 in Equation 9) by a varying
constant, which determines the trade-off between the model fit and
model complexity. (The noise variance estimate is known to add a
certain degree of arbitrariness to BIC with finite samples.) Each of
the figures exhibits several causal graphs corresponding to differ-
ent values of this parameter, with models becoming denser going
from left to right and top to bottom. Also in the figures the edge
thickness represents the l2- norm of the regression coefficient. It is
apparent that the two measures coincide for the most part (order of
appearance and edge thickness), and in particular, CO2 and other
greenhouse gases are judged to have greater causal strength than
solar radiance, according to both of these measures.
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Figure 4: Attributing the change in 1-year return level for tem-
perature extremes using annual data. Output causal structures
for decreasing degrees of sparsity. Edge thickness represents
the causality strength.

5. CONCLUDING REMARKS
In the present paper we initiated a data-centric approach to cli-

mate change attribution. The results to date are preliminary but en-
couraging, and in the future we plan to refine them, validate them
with the domain experts, and explore ways in which they can pro-
vide assistance to the dominant, simulation-based, approach to cli-
mate modeling.
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Figure 5: Attributing change in temperature using annual data. Output causal structures for decreasing degrees of sparsity. Edge
thickness represents the causality strength.
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Figure 6: Attributing change in temperature using monthly data. Output causal structures for decreasing degrees of sparsity. Edge
thickness represents the causality strength.


